
Joseph Gardi
Differential Geometry

Homework 2
Monday, September 23 2019

A.a) Problem 2 on page 14, Section 1-4, Baby Do Carmo.

First note that this plane is parallel to the kernel of (a, b, c) in R3. Recall that the kernel
of a vector in R3 is always a plane. So the normal vector to this plane is v = (a, b, c).
v is perpendicular to the plane. To show We can normalize the equation for any line
in order to derive the normal vector and distance to the origin, ax + by + c = 0 =⇒

a√
a2+b2+c2 x + b√

a2+b2+c2 y + cz√
a2+b2+c2 +

d√
a2+b2+c2 = 0.

Theorem The distance from the line to the origin is d√
a2+b2+c2 .

Proof: We want to find the point on the line (x, y, z) that is closest to the origin. Then
the distance from the origin to the line is just ||(x, y, z)||. We can find this by using the
lagrange multiplier to minimize ||(x, y, z)|| under the constraint that ax + by+ cz+ d = 0.
We get this system of equations,

ax + by + cz + d = 0
x√

x2 + y2 + z2
= 0

y√
x2 + y2 + z2

= 0

z√
x2 + y2 + z2

= 0

Solving this system of equations gives us the point ( ad
(a2+b2+c2)

, bd
(a2+b2+c2)

, cd
(a2+b2+c2)

). So
the distance to the line is,√

a2d2

(a2 + b2 + c2)2 +
b2d2

(a2 + b2 + c2)2 +
b2d2

(a2 + b2 + c2)2 =
|d|√

a2 + b2 + c2

�

A.b) Problem 5 on page 14, Section 1-4, Baby Do Carmo.
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⇐= First I show that if the equation is true then p is in the plane. Let the difference vec-
tors matrix be D = [(p − p1) (p − p2) (p − p3)] The given formula is equal to det(D).
When the determinant is zero the vectors columns of D are not all linearly indepen-
dent. This means that the columns of D all contained within a 2d subspace. The points
p, p1, p2, p3 differ from the columns of D only by a translation so they must lie within a
2d flat (they are coplanar).
=⇒ Now I show that if p is in the plane then the equation is true. If p is in the plane
then they are all coplanar. Subtracting, p from every point in the plane gives a plane
that passes through the origin. So the columns of D must be linearly dependent. Then
det(D) = 0. Meaning that equation is true. �

A.c) Problem 11 on page 15, Section 1-4, Baby Do Carmo.

Proof

Consider the vectors u and v and the parallelogram generated by these two vectors. The
area of this parallelogram is given by ||u|| ||v|| sin θ where θ is the angle between u and v.
We recognize this as the familiar cross-product in R3, hence the area of this parallelogram
is ||u × v||. The volume of the parallelepiped is the area of this parallelogram times a
distance perpendicular to the plane containing u and v. Notice that since w is linearly
independent from u and v, that there is a component of w that is perpendicular to both
u and v, and hence either parallel or anti-parallel to u× v. Therefore, the volume of the
parallelepiped is given by |(u× v) · w|. Observe that we can interpret the volume as the
determinant of a matrix given by

V =

∣∣∣∣∣∣
w1 w2 w3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .

Observe that V does not change if we perform an equal number of row exchanges on the
above matrix. First exchanging the first and second rows, and subsequently the second
and third rows we obtain

V =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
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If the above matrix is given by A, we know that V2 = det(A)2 = det(A)det(A) =
det(A)det(AT) = det(AAT). We therefore write

AAT =

 u1 u2 u3
v1 v2 v3
w1 w2 w3

 u1 v1 w1
u2 v2 w2
u3 v3 w3


=

 u2
1 + u2

2 + u2
3 u1v1 + u2v2 + u3v3 u1w1 + u2w2 + u3w3

v1u1 + v2u2 + v3u3 v2
1 + v2

2 + v2
3 v1w1 + v2w2 + v3w3

w1u1 + w2u2 + w3u3 w1v1 + w2v2 + w3v3 w2
1 + w2

2 + w2
3


=

 u · u u · v u · w
v · u v · v v · w
w · u w · v w · w

 .

Therefore

V2 =

∣∣∣∣∣∣
u · u u · v u · w
v · u v · v v · w
w · u w · v w · w

∣∣∣∣∣∣ .

�

A.d) Problem 13 on page 16, Section 1-4, Baby Do Carmo.

To show that cross product is constant we show that it’s gradient is always zero,

∇(u(t)× v(t)) = u′(t)× v(t) + u(t)× v′(t) (from Do Carmo pg. 14)
= (au(t) + bv(t))× v(t) + u(t)× (cu(t)− av(t))
= au(t)× v(t) + bv(t)× v(t) + cu(t)× u(t)− au(t)× v(t) (cross product is linear)

=~0 (Since v(t)× v(t) =~0)

�

B.a) Find the length of the curve obtained by intersecting the sphere x2 + y2 + z2 = 4
and the cylinder (x− 1)2 + y2 = 1 in R3.
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Solution

We can first parametrize the cylinder by taking x(t) = 1 + cos t and y(t) = sin t for
t ∈ [0, 2π]. Observe this satisfies the identity cos2 t + sin2 t = 1. Next we obtain an
equation of a parametrized curve in R3 by substituting these values of x(t) and y(t) into
the equation of the sphere and solving for z(t). We see that

(1 + cos t)2 + sin2 t + z2(t) = 4
cos2 t + sin2 t + 2 cos t + 1 + z2(t) = 4

2 + 2 cos t + z2(t) = 4
z2(t) = 2(1− cos t).

We now find the arclength of the curve in the first octant. Observe that at t = 0 we have
y(0) = 0, and hence this is the smallest value of t such that the curve lies in the first
octant. At t = π we have z2(π) = 4 and hence t obtains its largest value in the first octant
at t = π. The equation of the curve is then

α(t) =

(
1 + cos t, sin t,

√
2(1− cos t)

)
t ∈ [0, π].

To find the arclength we first find the derivative α′(t).

α′(t) =

(
− sin t, cos t,

sin t√
2(1− cos t)

)
.

Now find the norm of α′(t).

||α′(t)||2 = sin2 t + cos2 t +
sin2 t

2(1− cos t)

= 1 +
1− cos2 t

2(1− cos t)

= 1 +
(1− cos t)(1 + cos t)

2(1− cos t)

=
1
2
(3 + cos t).

Therefore the arclength of this curve in the first octant is

∫ π

0
||α′(t)|| dt =

∫ π

0

√
3 + cos t

2
dt

≈ 3.8202.
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Integration was done numerically on Wolfram Alpha. �

C.a) Problem 1 on page 5, Section 1-2, Baby Do Carmo.

α(t) = (sin(t), cos(t)) �

C.b) Problem 3 on page 5, Section 1-2, Baby Do Carmo.

It is like a point with that undergoes zero acceleration. So it has constant velocity. So it
goes in a straight line. �

C.c) Problem 4 on page 5, Section 1-2, Baby Do Carmo.

Proof

Let g(t) be the function given by α(t) · v = g(t). Taking the derivative of both sides we
obtain α′(t) · v = g′(t). We know however that since α′(t) is orthogonal to v for all t ∈ I
that g′(t) = 0. Therefore g(t) = c where c is a constant. Hence α(t) · v = c is constant for
all t ∈ I. Notice however that we are given that α(0) · v = 0. This initial condition implies
that c = 0. Therefore α(t) · v = 0 for all t ∈ I, hence α(t) is orthogonal to v for all t ∈ I. �

C.d) Problem 5 on page 5, Section 1-2, Baby Do Carmo.

Proof

=⇒
Suppose ||α(t)|| = c for all t ∈ I where c is a nonzero constant. We therefore have that
α(t) · α(t) = c2. Taking the derivative of both sides we obtain

α′(t) · α(t) + α(t) · α′(t) = 2α′(t) · α(t) = 0

implying that α′(t) · α(t) = 0 for all t ∈ I.

⇐=
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Suppose α(t) · α′(t) = 0 for all t ∈ I. Consider the norm ||α(t)||. Taking the derivative of
this we obtain

d
dt
||α(t)||2 = α(t) · α′(t) + α′(t) · α(t) = 2α(t) · α′(t) = 0.

This implies that ||α(t)|| = c where c is a constant. We know that c 6= 0, since this would
imply that the curve α(t) ≡ 0, which is a contradiction since it was stated in the problem
thta α(t) 6= 0 ∀t ∈ I. �
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