A: Problems on Reviewing of Rigid Motions in R^{3}.

- a) Show that the set of rigid motions $E(3)$ forms a group. (Later, we will see that $E(3)$ is in fact a Lie group.)

For this problem, I referenced an explanation of $E(3)$ given in a PDF by John Baez on the UCR Classical Mechanics website.

The set of rigid motions $E(3)$ contains all pairs (R, t) such that $R \in 0(3)$ is an orthogonal transformation (a rotation) and $t \in \mathbb{R}^{3}$ is a translation vector. Each element (R, t) gives a transformation of 3-dimensional Euclidean space built from an orthogonal transformation and a translation:

$$
f_{(R, t)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

defined by

$$
f_{(R, t)}(x)=R x+t
$$

Recall that a set is a group if it is equipped with a binary operation that satisfies the axioms of closure, associativity, identity, and invertibility.

Closure

Given elements $(R, t),\left(R^{\prime}, t^{\prime}\right) \in E(3)$, the composition of the transformations is

$$
\begin{aligned}
f_{(R, t)} \circ f_{\left(R^{\prime}, t^{\prime}\right)}(x) & =R\left(R^{\prime} x+t^{\prime}\right)+t \\
& =R R^{\prime} x+R t^{\prime}+t
\end{aligned}
$$

Since $R R^{\prime} \in O(3)$ and $R t^{\prime}+t \in \mathbb{R}^{n}$, the composed transformation is also in $E(3)$ and thus $E(3)$ is closed under composition.

Associativity

We assert that, given elements $(R, t),\left(R^{\prime}, t^{\prime}\right),\left(R^{\prime \prime}, t^{\prime \prime}\right) \in E(3)$, then

$$
f_{(R, t)} \circ\left(f_{\left(R^{\prime}, t^{\prime}\right)} \circ f_{\left(R^{\prime}, t^{\prime}\right)}\right)=\left(f_{(R, t)} \circ f_{\left(R^{\prime}, t^{\prime}\right)}\right) \circ f_{\left(R^{\prime}, t^{\prime}\right)}
$$

Proof. As a function of x, the left hand side of the above composition is given by

$$
\begin{aligned}
f_{(R, t)} \circ\left(f_{\left(R^{\prime}, t^{\prime}\right)} \circ f_{\left(R^{\prime}, t^{\prime}\right)}\right)(x) & =R\left(R^{\prime}\left(R^{\prime \prime} x+t^{\prime \prime}\right)+t^{\prime}\right)+t \\
& =R\left(R^{\prime} R^{\prime \prime}\right) x+R\left(R^{\prime} t^{\prime \prime}+t^{\prime}\right)+t \\
& =\left(R R^{\prime}\right) R^{\prime \prime} x+\left(R R^{\prime}\right) t^{\prime \prime}+\left(R t^{\prime}+t\right) \\
& =\left(f_{(R, t)} \circ f_{\left(R^{\prime}, t^{\prime}\right)}\right) \circ f_{\left(R^{\prime}, t^{\prime}\right)}(x)
\end{aligned}
$$

Identity

The pair $\left(I_{3}, 0\right) \in E(3)$ is the identity element. The proof is left as an exercise to the grader.

Invertibility

Any element (R, t) in $E(3)$ has an inverse $\left(R^{T},-R^{T} t\right)$ in $E(3)$.
Proof.

$$
\begin{aligned}
f_{(R, t)} \circ f_{\left(R^{T},-t\right)} & =f_{\left(R R^{T},-R R^{T} t+t\right)} \\
& =f_{\left(I_{3}, 0\right)}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f_{\left(R^{T}, R^{T} t\right)} \circ f_{(R, t)} & =f_{\left(R^{T} R, R^{T} R t-t\right)} \\
& =f_{\left(I_{3}, 0\right)} .
\end{aligned}
$$

As the composition of the two transformations has resulted in the identity element, the inverse exists and $\left(R^{T},-R^{T} t\right)$ is the proper inverse.

As all of the group axioms hold, $E(3)$ is a group.

B: Problems from Lectures

- a) Show that of all simple closed curves in the plane with given length l, a circle bounds the largest area.
See The isoperimetric inequality on Do Carmo page 33.

C: Other Problems

- a) Problem 2 on page 29, Section 1-6, Baby Do Carmo.
a) The osculating plane is the unique plane containing $\alpha(s), \alpha(s)+\alpha^{\prime}(s), \alpha(s)+$ $\alpha^{\prime \prime}(s)$. Let $P_{h_{1}, h_{2}}$ be the plane containing $\alpha(s), \alpha\left(s+h_{1}\right), \alpha\left(s+h_{2}\right)$. It is given that $\alpha(s) \in P_{h_{1}, h_{2}}$.
Now we show $\alpha(s)+\alpha^{\prime}(s) \in P_{h_{1}, h_{2}}$. All affine combinations of those points are contained in $P_{h_{1}, h_{2}}$ so $\alpha(s)+\alpha^{\prime}(s)=\alpha(s)+\frac{1}{h_{1}}\left(\alpha\left(s+h_{1}\right)-\alpha(s)\right) \in P_{h_{1}, h_{2}}$. Now we show

$$
\begin{aligned}
& \alpha(s)+\alpha^{\prime \prime}(s) \in P_{h_{1}, h_{2}} . \\
& \begin{aligned}
\alpha(s)+\alpha^{\prime \prime}(s) & =\alpha(s)+\frac{1}{h_{2}}\left(\alpha^{\prime}\left(s+h_{2}\right)-\alpha^{\prime}(s)\right) \\
& =\alpha(s)+\frac{1}{h_{2}}\left(\frac{\alpha\left(s+h_{2}\right)-\alpha\left(s+h_{1}\right)}{h_{2}-h_{1}}-\alpha^{\prime}(s)\right) \\
& \in P_{h_{1}, h_{2}}
\end{aligned}
\end{aligned}
$$

(Since this is an affine combination of poitns in the plane)
b) Let a be the center of this circle. Let r be the radius so $r=\|\alpha(s)-a\|=\| \alpha(s+$ $\left.h_{1}\right)-a\|=\| \alpha\left(s+h_{2}\right)-a \|$. We know that a must lie in the osculating plane since we just showed in part a that $\alpha(s), \alpha\left(s+h_{1}\right), \alpha\left(s+h_{2}\right)$ all lie in the osculating plane. The line through $\alpha(s)$ and $\alpha\left(s+h_{1}\right)$ is tangent to the circle. $n(s)$ is in the osculating plane and orthogonal to the tangent line so it must be pointed towards the center of the circle. Let's make a pameterization for our circle and use the osculating plane as our coordinate system with the origin at $a: \beta(t)=\left(r \cos \frac{t}{r}, r \sin \frac{t}{r}\right)$. This is already parameterized by arc length. The curvature is,

$$
\begin{aligned}
\left\|\beta^{\prime \prime}(t)\right\| & =\sqrt{\left(-\frac{1}{r} \cos \frac{t}{r}\right)^{2}+\left(-\frac{1}{r} \sin \frac{t}{r}\right)^{2}} \\
& =\frac{1}{r} \sqrt{\cos ^{2} \frac{t}{r}+\sin ^{2} \frac{t}{r}} \\
& =\frac{1}{r}
\end{aligned}
$$

The curvature of the circle $\left\|\beta^{\prime \prime}(t)\right\|$ is equal to the curvature of the given curve $\left\|\alpha^{\prime \prime}(s)\right\|$ because they share those 3 points. So we get $\frac{1}{r}=k(s) \Longrightarrow r=\frac{1}{k(s)}$.

- b) Problem 1 on page 47, Section 1-7, Baby Do Carmo.

No. That would violate the isoperimetric inequality.

- c) Problem 2 on page 47, Section 1-7, Baby Do Carmo.

Suppose that we have a curve E of length l from A to B that is part of a larger circle D with length g. We know from the isoperimetric inequality that this circle is the closed cuve of length g that bounds the largest possible area. If there was a curve C of length l from A to B that together with $\overline{A B}$ bounds a larger area than E with $\overline{A B}$ that would contradict the isoperimetric theorem because that would imply that replaceing E with C in the circle D would create a shape with length g that bounds more area than the circle D.

- d) Problem 3 on page 65, Section 2-2, Baby Do Carmo.

It was shown in the book that a one sheeted cone is not a regular surface. The double sheeted cone contains the one sheeted cone so it can't be a regular surface. It would still have the issue of not being a differentiable function in any form at $(0,0,0)$.

- e) Problem 5 on page 65, Section 2-2, Baby Do Carmo.

It is a parameterization. x is surjective to to the neighborhood $V=B_{.1}((1,1,1))$.

- f) Problem 10 on page 66, Section 2-2, Baby Do Carmo.
no. There is a ciritical point at the part where the loops meet.
- g) Problem 16 on page 67, Section 2-2, Baby Do Carmo.

Given u, v we want to find $\pi^{-1}(u, v)$. We know the following

$$
\begin{aligned}
\left\|\pi^{-1}(u, v)-(0,0,1)\right\| & =1 \\
\exists \alpha,(0,0,2)+\alpha\left(\pi^{-1}(u, v)-(0,0,2)\right) & =(u, v, 0)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\pi^{-1}(u, v) & =\frac{1}{\alpha}(u, v,-2)+(0,0,2) \tag{eq 1}\\
\left\|\pi^{-1}(u, v)-(0,0,1)\right\| & =\left\|\frac{1}{\alpha}(u, v,-2)+(0,0,1)\right\| \\
& =\sqrt{(u / \alpha)^{2}+(v / \alpha)^{2}+\left(1-\frac{2}{\alpha}\right)^{2}}=1 \\
\Longrightarrow \frac{u^{2}+v^{2}}{\alpha^{2}}+1-4 / \alpha+4 / \alpha^{2} & =1 \\
\Longrightarrow \frac{u^{2}+v^{2}+4}{\alpha}-4 & =0 \\
\Longrightarrow \alpha & =\frac{u^{2}+v^{2}+4}{4} \tag{eq 2}
\end{align*}
$$

By plugging in equation 2 for α into equation 1 for $\pi^{-1}(u$, $)$ we get the desired result

D: Extra Credit Problems

- Give a different solution to B a).

