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Homework 4
Due: Monday, Octoboer 7, 2019

A: Problems on Reviewing of Rigid Motions in R3.

• a) Show that the set of rigid motions E(3) forms a group. (Later, we will see that
E(3) is in fact a Lie group.)

For this problem, I referenced an explanation of E(3) given in a PDF by John Baez on the
UCR Classical Mechanics website.

The set of rigid motions E(3) contains all pairs (R, t) such that R ∈ 0(3) is an orthogonal
transformation (a rotation) and t ∈ R3 is a translation vector. Each element (R, t) gives
a transformation of 3-dimensional Euclidean space built from an orthogonal transforma-
tion and a translation:

f(R,t) : R3 → R3

defined by
f(R,t)(x) = Rx + t

Recall that a set is a group if it is equipped with a binary operation that satisfies the axioms
of closure, associativity, identity, and invertibility.

Closure

Given elements (R, t), (R′, t′) ∈ E(3), the composition of the transformations is

f(R,t) ◦ f(R′,t′)(x) = R(R′x + t′) + t

= RR′x + Rt′ + t.

Since RR′ ∈ O(3) and Rt′ + t ∈ Rn, the composed transformation is also in E(3) and thus
E(3) is closed under composition.

Associativity

We assert that, given elements (R, t), (R′, t′), (R′′, t′′) ∈ E(3), then

f(R,t) ◦
(

f(R′,t′) ◦ f(R′,t′)

)
=
(

f(R,t) ◦ f(R′,t′)

)
◦ f(R′,t′).

Proof. As a function of x, the left hand side of the above composition is given by

f(R,t) ◦
(

f(R′,t′) ◦ f(R′,t′)

)
(x) = R(R′(R′′x + t′′) + t′) + t

= R(R′R′′)x + R(R′t′′ + t′) + t
= (RR′)R′′x + (RR′)t′′ + (Rt′ + t)

=
(

f(R,t) ◦ f(R′,t′)

)
◦ f(R′,t′)(x)
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http://math.ucr.edu/home/baez/classical/galilei_pro.pdf


�

Identity

The pair (I3, 0) ∈ E(3) is the identity element. The proof is left as an exercise to the grader.

Invertibility

Any element (R, t) in E(3) has an inverse (RT,−RTt) in E(3).

Proof.

f(R,t) ◦ f(RT ,−t) = f(RRT ,−RRTt+t)

= f(I3,0).

Similarly,

f(RT ,RTt) ◦ f(R,t) = f(RT R,RT Rt−t)

= f(I3,0).

As the composition of the two transformations has resulted in the identity element, the
inverse exists and (RT,−RTt) is the proper inverse.

�

As all of the group axioms hold, E(3) is a group.

�

B: Problems from Lectures

• a) Show that of all simple closed curves in the plane with given length l, a circle
bounds the largest area.

See The isoperimetric inequality on Do Carmo page 33. �

C: Other Problems

• a) Problem 2 on page 29, Section 1-6, Baby Do Carmo.

a) The osculating plane is the unique plane containing α(s), α(s) + α′(s), α(s) +
α′′(s). Let Ph1,h2 be the plane containing α(s), α(s + h1), α(s + h2). It is given that
α(s) ∈ Ph1,h2 .
Now we show α(s) + α′(s) ∈ Ph1,h2 . All affine combinations of those points are con-
tained in Ph1,h2 so α(s) + α′(s) = α(s) + 1

h1
(α(s + h1)− α(s)) ∈ Ph1,h2 . Now we show
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α(s) + α′′(s) ∈ Ph1,h2 .

α(s) + α′′(s) = α(s) +
1
h2
(α′(s + h2)− α′(s))

= α(s) +
1
h2
(

α(s + h2)− α(s + h1)

h2 − h1
− α′(s))

∈ Ph1,h2
(Since this is an affine combination of poitns in the plane)

b) Let a be the center of this circle. Let r be the radius so r = ||α(s)− a|| = ||α(s +
h1)− a|| = ||α(s + h2)− a||. We know that a must lie in the osculating plane since
we just showed in part a that α(s), α(s + h1), α(s + h2) all lie in the osculating plane.
The line through α(s) and α(s + h1) is tangent to the circle. n(s) is in the osculating
plane and orthogonal to the tangent line so it must be pointed towards the center of
the circle. Let’s make a pameterization for our circle and use the osculating plane
as our coordinate system with the origin at a: β(t) = (rcos t

r , rsin t
r ). This is already

parameterized by arc length. The curvature is,

||β′′(t)|| =
√
(−1

r
cos

t
r
)2 + (−1

r
sin

t
r
)2

=
1
r

√
cos2 t

r
+ sin2 t

r

=
1
r

The curvature of the circle ||β′′(t)|| is equal to the curvature of the given curve
||α′′(s)|| because they share those 3 points. So we get 1

r = k(s) =⇒ r = 1
k(s) .

�

• b) Problem 1 on page 47, Section 1-7, Baby Do Carmo.

No. That would violate the isoperimetric inequality.

�

• c) Problem 2 on page 47, Section 1-7, Baby Do Carmo.

Suppose that we have a curve E of length l from A to B that is part of a larger circle
D with length g. We know from the isoperimetric inequality that this circle is the
closed cuve of length g that bounds the largest possible area. If there was a curve
C of length l from A to B that together with AB bounds a larger area than E with
AB that would contradict the isoperimetric theorem because that would imply that
replaceing E with C in the circle D would create a shape with length g that bounds
more area than the circle D. �

• d) Problem 3 on page 65, Section 2-2, Baby Do Carmo.
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It was shown in the book that a one sheeted cone is not a regular surface. The double
sheeted cone contains the one sheeted cone so it can’t be a regular surface. It would
still have the issue of not being a differentiable function in any form at (0, 0, 0). �

• e) Problem 5 on page 65, Section 2-2, Baby Do Carmo.
It is a parameterization. x is surjective to to the neighborhood V = B.1((1, 1, 1)).

• f) Problem 10 on page 66, Section 2-2, Baby Do Carmo.
no. There is a ciritical point at the part where the loops meet.

• g) Problem 16 on page 67, Section 2-2, Baby Do Carmo.
Given u, v we want to find π−1(u, v). We know the following

||π−1(u, v)− (0, 0, 1)|| = 1

∃α, (0, 0, 2) + α(π−1(u, v)− (0, 0, 2)) = (u, v, 0)

Therefore,

π−1(u, v) =
1
α
(u, v,−2) + (0, 0, 2) eq 1

||π−1(u, v)− (0, 0, 1)|| = ||1
α
(u, v,−2) + (0, 0, 1)||

=

√
(u/α)2 + (v/α)2 + (1− 2

α
)2 = 1

=⇒ u2 + v2

α2 + 1− 4/α + 4/α2 = 1

=⇒ u2 + v2 + 4
α

− 4 = 0

=⇒ α =
u2 + v2 + 4

4
eq 2

By plugging in equation 2 for α into equation 1 for π−1(u, ) we get the desired result

D: Extra Credit Problems

• Give a different solution to B a).
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