Joseph Gardi
Differential Geometry
Homework 5

Read:

- Baby Do Carmo, Differential Geometry of Curves and Surfaces: Sections 2-2, 2-3, 2-4 and Appendix (starting on page 118) on A Brief Review of Continuity and Differentiability
- Handouts 6 and 7
- Lecture Notes

Do:

Remember, the problems marked with an asterisk have hints in the back of the book. Additionally, many of these problems ask that you re-prove something that do Carmo proves in the reading.

A: Problems on Reviewing of Continuity and Differentiability
a) Prove the proposition 7 on page 127, Baby Do Carmo.

DEFINITION 1. Let $\mathrm{F}: \mathrm{U} \subset \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ be a differentiable map. To each $\mathrm{p} \in \mathrm{U}$ we associate a linear map $\mathrm{dF}_{\mathrm{p}}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ which is called the differential of F at p and is defined as follows. Let $\mathrm{w} \in \mathrm{R}^{\mathrm{n}}$ and let $\alpha:(-\epsilon, \epsilon) \rightarrow \mathrm{U}$ be a differentiable curve such that $\alpha(0)=\mathrm{p}, \alpha^{\prime}(0)=\mathrm{w}$. By the chain rule, the curve $\beta=\mathrm{F} \circ \alpha:(-\epsilon, \epsilon) \rightarrow \mathrm{R}^{\mathrm{m}}$ is also differentiable. Then (Fig. A2-5)

Figure A2-5
PROPOSITION 7. The above definition of dF_{p} does not depend on the choice of the curve which passes through p with tangent vector w , and dF_{p} is, in fact, a linear map.
b) Prove the proposition 8 on page 129, Baby Do Carmo.

PROPOSITION 8 (The Chain Rule for Maps). Let $F: U \subset R^{n} \rightarrow \mathbf{R}^{\mathbf{m}}$ and $\mathrm{G}: \mathrm{V} \subset \mathrm{R}^{\mathrm{m}} \rightarrow \mathrm{R}^{\mathrm{k}}$ be differentiable maps, where U and V are open sets such that $\mathrm{F}(\mathrm{U}) \subset \mathrm{V}$. Then $\mathrm{G} \circ \mathrm{F}: \mathrm{U} \longrightarrow \mathrm{R}^{\mathrm{k}}$ is a differentiable map, and

$$
\mathrm{d}(\mathrm{G} \circ \mathrm{~F})_{\mathrm{p}}=\mathrm{dG}_{\mathrm{F}(\mathrm{p})} \circ \mathrm{dF}_{\mathrm{p}}, \quad \mathrm{p} \in \mathrm{U}
$$

Proof. The fact that $G \circ F$ is differentiable is a consequence of the chain rule for functions. Now, let $w_{1} \in R^{n}$ be given and let us consider a curve $\alpha:\left(-\epsilon_{2}, \epsilon_{2}\right) \rightarrow U$, with $\alpha(0)=p, \alpha^{\prime}(0)=w_{1}$. Set $d F_{p}\left(w_{1}\right)=w_{2}$ and observe that $d G_{F(p)}\left(w_{2}\right)=\left.(d / d t)(G \circ F \circ \alpha)\right|_{t=0}$. Then

$$
d(G \circ F)_{p}\left(w_{1}\right)=\frac{d}{d t}(G \circ F \circ \alpha)_{t=0}=d G_{F(p)}\left(w_{2}\right)=d G_{F(p)} \circ d F_{p}\left(w_{1}\right) .
$$

Q.E.D.
c) Rewrite Example 11 on page 132 of Baby Do Carmo and explain clearly why the Inverse Function Theorem (page 131) is true only in a neighborhood of a point p.

Example 11. Let $F: R^{2} \rightarrow R^{2}$ be given by

$$
F(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right), \quad(x, y) \in R^{2}
$$

The component functions of F, namely, $u(x, y)=e^{x} \cos y, v(x, y)=e^{x}$ $\sin y$, have continuous partial derivatives of all orders. Thus, F is differentiable.

It is instructive to see, geometrically, how F transforms curves of the $x y$ plane. For instance, the vertical line $x=x_{0}$ is mapped into the circle $u=e^{x_{0}} \cos y, v=e^{x_{0}} \sin y$ of radius $e^{x_{0}}$, and the horizontal line $y=y_{0}$ is mapped into the half-line $u=e^{x} \cos y_{0}, v=e^{x} \sin y_{0}$ with slope $\tan y_{0}$. It follows that (Fig. A2-7)

Figure A2-7

$$
\begin{aligned}
d F_{\left(x_{0}, y_{0}\right)}(1,0) & =\left.\frac{d}{d x}\left(e^{x} \cos y_{0}, e^{x} \sin y_{0}\right)\right|_{x=x_{0}} \\
& =\left(e^{x_{0}} \cos y_{0}, e^{x_{0}} \sin y_{0}\right) \\
d F_{\left(x_{0}, y_{0}\right)}(1,0) & =\left.\frac{d}{d y}\left(e^{x_{0}} \cos y, e^{x_{0}} \sin y\right)\right|_{y=y_{0}} \\
& =\left(-e^{x_{0}} \sin y_{0}, e^{x_{0}} \cos y_{0}\right)
\end{aligned}
$$

This can be most easily checked by computing the Jacobian matrix of F,

$$
d F_{(x, y)}=\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=\left(\begin{array}{ll}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right)
$$

and applying it to the vectors $(1,0)$ and $(0,1)$ at $\left(x_{0}, y_{0}\right)$.
We notice that the Jacobian determinant $\operatorname{det}\left(d F_{(x, y)}\right)=e^{x} \neq 0$, and thus $d F_{p}$ is nonsingular for all $p=(x, y) \in R^{2}$ (this is also clear from the previous geometric considerations). Therefore, we can apply the inverse function theorem to conclude that F is locally a diffeomorphism.

Observe that $F(x, y)=F(x, y+2 \pi)$. Thus, F is not one-to-one and has no global inverse. For each $p \in R^{2}$, the inverse function theorem gives neighborhoods V of p and W of $F(p)$ so that the restriction $F: V \rightarrow W$ is a diffeomorphism. In our case, V may be taken as the strip $\{-\infty<x<\infty$, $0<y<2 \pi\}$ and W as $R^{2}-\{(0,0)\}$. However, as the example shows, even if the conditions of the theorem are satisfied everywhere and the domain of definition of F is very simple, a global inverse of F may fail to exist.

INVERSE FUNCTION THEOREM. Let $\mathrm{F}: \mathrm{U} \subset \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ be a differentiable mapping and suppose that at $\mathrm{p} \in \mathrm{U}$ the differential $\mathrm{dF}_{\mathrm{p}}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ is an isomorphism. Then there exists a neighborhood V of p in U and a neighborhood W of $\mathrm{F}(\mathrm{p})$ in R^{n} such that $\mathrm{F}: \mathrm{V} \rightarrow \mathrm{W}$ has a differentiable inverse $\mathrm{F}^{-1}: \mathrm{W} \rightarrow \mathrm{V}$.
d) Show that an infinite cylinder after deleting a vertical line is diffeomorphic to a plane.

Let r be the radius of the cylinder and put the center of the cylinder at the origin.
Let the plane be $\operatorname{span}([1,0,0],[0,1,0])$.
Let's use something like cylindrical coordinates. We are parameterizing the infinite cylinder with α : $(\theta, h) \rightarrow(r \cos \theta, r \sin \theta, h)$. Proving that this is a parameterization is left as an excersise.

Let $x:(a, b) \rightarrow\left(2 \pi \frac{|a|}{|a|+1}, b\right)$.
I want to show that $\alpha \circ x$ is a difeomorphism between the plane and the cylinder. To do this it is sufficient to show that x is diffeomorphic since is a parameterization. It is left as an excersise to show that x is a bijection. Now to show that it is differentiable and has differentiable inverse we show that the jacobian is invertable at all points in the plane. Let $(a, b, c) \in \mathbb{R}^{3}$ be given.
The jacobian is,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial a} & \frac{\partial x_{1}}{\partial b} \\
\frac{\partial x_{2}}{\partial a} & \frac{\partial x_{2}}{\partial b}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
2 \pi \cdot \frac{1-|a| /(|a|+1)}{|a|+1} & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Now we just need to show this matrix is invertable for all a. The determinant is

$$
2 \pi \cdot \frac{1-|a| /(|a|+1)}{|a|+1}
$$

The determinant approaches zero but never actually reaches it so x is diffeomorphic.

B: Problems from Lectures
a) Use Inverse Function Theorem to give a proof of proposition 2, page 59, Baby Co Carmo.

PROPOSITION 2. If $\mathrm{f}: \mathrm{U} \subset \mathrm{R}^{3} \rightarrow \mathrm{R}$ is a differentiable function and $\mathrm{a} \in \mathrm{f}(\mathrm{U})$ is a regular value of f , then $\mathrm{f}^{-1}(\mathrm{a})$ is a regular surface in R^{3}.
b) Use Inverse Function Theorem to give a proof of proposition 4, page 64, Baby Co Carmo.

PROPOSITION 4. Let $\mathrm{p} \in \mathrm{S}$ be a point of a regular surface S and let $\mathbf{x}: \mathrm{U} \subset \mathrm{R}^{2} \longrightarrow \mathrm{R}^{3}$ be a map with $\mathrm{p} \in \mathbf{x}(\mathrm{U})$ such that conditions 1 and 3 of Def. 1 hold. Assume that \mathbf{x} is one-to-one. Then \mathbf{x}^{-1} is continuous.

C: Other Problems

a) Problem 7 on page 66, Section 2-2, Baby Do Carmo.
7. Let $f(x, y, z)=(x+y+z-1)^{2}$.
a. Locate the critical points and critical values of f.
b. For what values of c is the set $f(x, y, z)=c$ a regular surface?
c. Answer the questions of parts a and b for the function $f(x, y, z)=x y z^{2}$.

First we find the set of critical points $C=\left\{(x, y, z) \in \mathbb{R}^{3}: \mathbf{d} f(x, y, z)=0\right\}$ So for each $(x, y, z) \in C$,

$$
\begin{aligned}
& \mathbf{d} f(x, y, z)=0 \\
\Longleftrightarrow & {\left[\begin{array}{lll}
2(x+y+z-1) & 2(x+y+z-1) & 2(x+y+z-1)
\end{array}\right]=0 } \\
\Longleftrightarrow & x+y+z-1=0
\end{aligned}
$$

This is the equation of a plane. So C is the set of points in a plane. The critical values are the image $f(C)=\{f(x, y, z):(x, y, z) \in C\}=\left\{(x+y+z-1)^{2}: x+y+z-1=0\right\}=\{0\}$
b) Problem 11 on page 66, Section 2-2, Baby Do Carmo.
11. Show that the set $S=\left\{(x, y, z) \in R^{3} ; z=x^{2}-y^{2}\right\}$ is a regular surface and check that parts a and b are parametrizations for S :
a. $\mathbf{x}(u, v)=(u+v, u-v, 4 u v),(u, v) \in R^{2}$.
*b. $\mathbf{x}(u, v)=\left(u \cosh v, u \sinh v, u^{2}\right),(u, v) \in R^{2}, u \neq 0$.
Which parts of S do these parametrizations cover?

I'll do both part a and part b at once. To show that a, b are reegular you can show that the differential for both functions is invertable. So for a the differential is,

$$
\mathbf{d} a(u, v)=\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
4 v & 4 u
\end{array}\right]
$$

This matrix is an invertable map everywhere because it has the minor $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ which is not invertable. Similarly, for b,

$$
\mathbf{d} b(u, v)=\left[\begin{array}{cc}
\cosh v & u \sinh v \\
\sinh v & u \cosh v \\
2 u & 0
\end{array}\right]
$$

It was given that $u \neq 0$ for inputs to b so $2 u$ is not a multiple of 0 . Therefore, the columns of $\mathbf{d} b$ are always linearly independent. So the map is always invertable.

Now let's show that the images of both functions are contained in S. let's call the functions a, b rather than calling both of them x. For all $p=(u+v, u-v, 4 u v) \in x\left(\mathbb{R}^{2}\right),(u+v)^{2}-(u-v)^{2}=u^{2}+2 u v+v^{2}-\left(u^{2}-\right.$ $\left.2 u v+v^{2}\right)=4 u v$. So $z=x^{2}-y^{2}$ is satisified for at p. Therefore $p \in S$. Similarly for b :

$$
\begin{array}{r}
\forall p=\left(u \cosh v, u \sinh v, u^{2}\right) \in \operatorname{image}(b), \\
(u \cosh v)^{2}-(u \sinh v)^{2}=u^{2}\left(\cosh ^{2} v-\sinh ^{2} v\right)=u^{2}
\end{array}
$$

To show that a, b are homeomorphic we have to show they are bijective. First I do it for a. Suppose that $a\left(u_{1}, v_{1}\right)=a\left(u_{2}, v_{2}\right)$. Then I will show that $u_{1},=u_{2}, v_{1},=v_{2}$. This gives us the matrix equation,

$$
\begin{aligned}
& \qquad A\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]=A\left[\begin{array}{l}
u_{2} \\
v_{2}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
u_{2} \\
v_{2}
\end{array}\right] \text { (because } A \text { is invertible) } \\
& \text { where } A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

Showing b is bijective is left as an excersise. Then to show that a, b are homeomorphic we observe that they are continuous and have continuous inverses. To Show that the x covers $V \cap S$ for some neighborhood $V \subset S$ just.
c) Problem 1 on page 80, Section 2-3, Baby Do Carmo.
*1. Let $S^{2}=\left\{(x, y, z) \in R^{3} ; x^{2}+y^{2}+z^{2}=1\right\}$ be the unit sphere and let $A: S^{2} \rightarrow S^{2}$ be the (antipodal) map $A(x, y, z)=(-x,-y,-z)$. Prove that A is a diffeomorphism.

First observe it is a bijection. Then observe that the jacobian is inverable everywhere.
d) Problem 8 on page 80, Section 2-3, Baby Do Carmo.
*8. Let $S^{2}=\left\{(x, y, z) \in R^{3} ; x^{2}+y^{2}+z^{2}=1\right\} \quad$ and $H=\left\{(x, y, z) \in R^{3}\right.$; $\left.x^{2}+y^{2}-z^{2}=1\right\}$. Denote by $N=(0,0,1)$ and $S=(0,0,-1)$ the north and south poles of S^{2}, respectively, and let $F: S^{2}-\{N\} \cup\{S\} \rightarrow H$ be defined as follows: For each $p \in S^{2}-\{N\} \cup\{S\}$ let the perpendicular from p to the z axis meet $0 z$ at q. Consider the half-line l starting at q and containing p. Then $F(p)=l \cap H$ (Fig. 2-20). Prove that F is differentiable.

Given a point $p=(x, y, z) \in S^{2}$ we find q by projection onto the z-axis, so $q=(0,0, z)$. The half line joining q to p is parameterized by $(t x, t y, z)$ where $0 \leq t$. This line intersects H when

$$
t^{2} x^{2}+t^{2} y^{2}-z^{2}=1
$$

solving for t we get

$$
t=\frac{\sqrt{1+z^{2}}}{\sqrt{x^{2}+y^{2}}}
$$

So

$$
F(p)=\left(\frac{\sqrt{1+z^{2}}}{\sqrt{x^{2}+y^{2}}} x, \frac{\sqrt{1+z^{2}}}{\sqrt{x^{2}+y^{2}}} y, z\right)
$$

Let $V=\mathbb{R}^{3}-\{(x, y, z) \mid x=y=0\}$, then V is an open subset of \mathbb{R}^{3} and F has continuous partial derivatives on V. Therefore, F is differentiable on V

Since $S^{2}-(\{N\} \cup\{S\}) \subset V$ and S^{2} and H are regular surfaces, we have, by Example 3 of section 2-3, that $\left.F\right|_{S^{2}}: S^{2} \rightarrow H$ is differentiable.
e) Problem 10 on page 81, Section 2-3, Baby Do Carmo.
10. Let C be a plane regular curve which lies in one side of a straight line r of the plane and meets r at the points p, q (Fig. 2-21). What conditions should C satisfy to ensure that the rotation of C about r generates an extended (regular) surface of revolution?

Figure 2-21

The surface generated needs have parametrizations at the points p and q. In addition the curve C should have no self intersections. These conditions will be meet if the curve formed by joining C with its reflection over r is a simple closed regular curve (see image below).

More formally, let C^{\prime} be the curve given by the reflection of C over the line r. We require that the curve C satisfy the condition that $C \cup C^{\prime}$ is a simple regular closed curve.

f) Problem 12 on page 81, Section 2-3, Baby Do Carmo.
12. Parametrized surfaces are often useful to describe sets $\boldsymbol{\Sigma}$ which are regular surfaces except for a finite number of points and a finite number of lines. For instance, let C be the trace of a regular parametrized curve $\alpha:(a, b) \rightarrow R^{3}$ which does not pass through the origin $O=(0,0,0)$. Let Σ be the set generated by the

Figure 2-22
displacement of a straight line l passing through a moving point $p \in C$ and the fixed point 0 (a cone with vertex 0 ; see Fig. 2-22).
a. Find a parametrized surface \mathbf{x} whose trace is $\boldsymbol{\Sigma}$.
b. Find the points where \mathbf{x} is not regular.
c. What should be removed from Σ so that the remaining set is a regular surface?

Since it is not clear by the description, I will assume this surface is a double sided "cone" and extends to infinity in both directions.
a)
solution:

We can achieve a two dimensional parametrization whose trace is \sum, by parametrizing C by $u \in(a, b)$ and the lines through O and points on C by $v \in(-\infty, \infty)$

The parametrized surface, whose trace is \sum, is defined as

$$
x:(a, b) \times \mathbb{R} \rightarrow \mathbb{R}^{3} \quad \text { where } \quad x(u, v)=\left(v \alpha_{x}(u), v \alpha_{y}(u), v \alpha_{z}(u)\right)
$$

b)

solution:

We have that

$$
\frac{\partial x}{\partial u}=v \alpha^{\prime}(u) \quad \text { and } \quad \frac{\partial x}{\partial v}=\alpha(u)
$$

Which gives

$$
\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}=v\left(\alpha^{\prime}(u) \wedge \alpha(u)\right)
$$

So $\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}=0$ when $v=0$ or $\alpha^{\prime}(u) \wedge \alpha(u)=0$
So the critical points occur on the lines $\left\{(u, v) \in(a, b) \times \mathbb{R} \mid \alpha^{\prime}(u) \wedge \alpha(u)=0\right\}$ and on the u-axis.
c)
solution:

To make \sum a regular surface we should remove the image of the critical points. The image of the u-axis is the point $O=(0,0,0)$

The image of a line $\left\{(u, v) \in(a, b) \times \mathbb{R} \mid \alpha^{\prime}(u) \wedge \alpha(u)=0\right\}$ is a line through the origin and the point $\alpha(u)$
g) Problem 15 on page 82, Section 2-3, Baby Do Carmo.
a) It was shown in the book that all parameterizations of a surface are diffeomorphic to one another and for any parameterizations $\alpha, \beta, \alpha^{-1} \circ \beta$ is diffeomorphic.
b)

$$
\begin{aligned}
\left|\int_{\tau_{0}}^{\tau}\right| \beta^{\prime}(\tau)|d \tau| & =\left|\int_{\tau_{0}}^{\tau}\right|(\alpha \circ h)^{\prime}(\tau)|d \tau| \\
& =\left|\int_{t_{0}}^{t}\right|(\alpha)^{\prime}(t)|d t|
\end{aligned}
$$

