Joseph Gardi
Differential Geometry
Homework 5

Read:

* Baby Do Carmo, Differential Geometry of Curves and Surfaces: Sections 2-2, 2-3, 2-4 and Appendix
(starting on page 118) on A Brief Review of Continuity and Differentiability

e Handouts 6 and 7

e Lecture Notes

Do:

Remember, the problems marked with an asterisk have hints in the back of the book. Additionally, many
of these problems ask that you re-prove something that do Carmo proves in the reading.

A: Problems on Reviewing of Continuity and Differentiability
a) Prove the proposition 7 on page 127, Baby Do Carmo.

DEFINITION 1. Let F: U < R® — R™ be a differentiable map. To each
p € U we associate a linear map dF: R* — R™ which is called the differential
of F at p and is defined as follows. Let w € R® and let a: (—¢,€) — U be a
differentiable curve such that a(0) = p, a’(0) = w. By the chain rule, the curve
B = Foua: (—e¢, €) — R™ is also differentiable. Then (Fig. A2-5)

dF,(w) = f/(0).
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Figure A2-5

PROPOSITION 7. The above definition of dF, does not depend on the
choice of the curve which passes through p with tangent vector w, and dF is,
in fact, a linear map.




b) Prove the proposition 8 on page 129, Baby Do Carmo.
PROPOSITION 8 (The Chain Rule for Maps). Ler F: U < R* — R™
and G: V < R™ — R* be differentiable maps, where U and V are open sets
such that F(U) < V. Then G o F: U — R is a differentiable map, and

d(G o F)p = dGF(p) o dFD’ P e U

Proof. The fact that G o F is differentiable is a consequence of the chain
rule for functions. Now, let w, € R" be given and let us consider a curve
o (—e,, €,) — U, with a(0) = p, '(0) = w,. Set dF (w,) — w, and observe
that dGy,,(w,) = (d/dt)(G o F o a),.,. Then

&G o F),(w,) = %(G o Fo®)og = dGypy (W) = dGy,, o dF ().
Q.E.D.




c) Rewrite Example 11 on page 132 of Baby Do Carmo and explain clearly why the Inverse Function
Theorem (page 131) is true only in a neighborhood of a point p.

Example 11. Let F: R* — R? be given by
F(x, y) = (e*cosy, e*siny), (x,») € R~

The component functions of F, namely, u(x, y) = e* cos y, v(x,y) = e*
sin y, have continuous partial derivatives of all orders. Thus, F is differenti-
able.

It is instructive to see, geometrically, how F transforms curves of the
xy plane. For instance, the vertical line x = x, is mapped into the circle
u = e*cos y, v = e sin y of radius e*, and the horizontal line y =y, is
mapped into the half-line ¥ = e* cos y,, v = e* sin p, with slope tan y,. It
follows that (Fig. A2-7)
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Figure A2-7

dF (1, 0) = (e cos o, e sin yo)l..n
= (e™ cos yg, € sin y,),
d, . .
Aol 0) = (™ cos p, €% sin y)y-,

= (—e™ sin yq, € cOos yy).

This can be most easily checked by computing the Jacobian matrix of F,

. % gg B e*cosy —e*siny
(x,») — - ?
a'v d'v X ol x
3x 9 e*siny e*cosy

and applying it to the vectors (1, 0) and (0, 1) at (x,, ¥,)-

We notice that the Jacobian determinant det(dF,, ,) = ¢* % 0, and thus
dF , is nonsingular for all p = (x, y) € R? (this is also clear from the previous
geometric considerations). Therefore, we can apply the inverse function
theorem to conclude that F is locally a diffeomorphism.

Observe that F(x, y) = F(x, y + 2r). Thus, F is not one-to-one and has
no global inverse. For each p € R?, the inverse function theorem gives
neighborhoods ¥V of p and W of F(p) so that the restriction F: V-— Wis a
diffeomorphism. In our case, ¥ may be taken as the strip {—o0 < x < oo,
0 < y < 2x} and W as R* — {(0, 0)}. However, as the example shows, even
if the conditions of the theorem are satisfied everywhere and the domain of
definition of F is very simple, a global inverse of F may fail to exist.




INVERSE FUNCTION THEOREM. Let F: U < R® — R* be a differ-
entiable mapping and suppose that at p € U the differential dF_: R® — R is
an isomorphism. Then there exists a neighborhood V of p in U and a neigh-
borhood W of F(p) in R* such that F: V-— W has a differentiable inverse
F-1:W—V.



’ d) Show that an infinite cylinder after deleting a vertical line is diffeomorphic to a plane.

Let r be the radius of the cylinder and put the center of the cylinder at the origin.

Let the plane be span([1,0,0], [0,1,0]).
Let’s use something like cylindrical coordinates. We are parameterizing the infinite cylinder with « :
(6,h) — (rcos@,rsinf, h). Proving that this is a parameterization is left as an excersise.

. la]
Letx: (ﬂ, b) — (ZNW, b)
I want to show that « o x is a difeomorphism between the plane and the cylinder. To do this it is sufficient
to show that x is diffeomorphic since is a parameterization . It is left as an excersise to show that x is a
bijection. Now to show that it is differentiable and has differentiable inverse we show that the jacobian is

invertable at all points in the plane. Let (a,b,¢) € R3 be given.

The jacobian is,
9x  9xy

da db
rn, 1-Jal/(al+1) 0]

la]+1
0 1

Now we just need to show this matrix is invertable for all a. The determinant is

oo, 1=lal/(la] +1)
la| +1
The determinant approaches zero but never actually reaches it so x is diffeomorphic. L]



B: Problems from Lectures

a) Use Inverse Function Theorem to give a proof of proposition 2, page 59, Baby Co Carmo.

PROPOSITION 2. If f: U « R? — R is a differentiable function and
a € f(U) is a regular value of f, then £~'(a) is a regular surface in R>.




b) Use Inverse Function Theorem to give a proof of proposition 4, page 64, Baby Co Carmo.
PROPOSITION 4. Let p € S be a point of a regular surface S and let
x: U © R? — R? be amap withp € x(U) such that conditions | and 3 of Def
1 hold. Assume that X is one-to-one. Then X' is continuous.




C: Other Problems
a) Problem 7 on page 66, Section 2-2, Baby Do Carmo.
7. Let f(x, y,2) = (x +y +z — 1)
a. Locate the critical points and critical values of f.

b. For what values of ¢ is the set f(x, y, z) = c a regular surface?
c. Answer the questions of parts a and b for the function f(x, y, z) = xyz2.

First we find the set of critical points C = {(x,y,z) € R3: df(x,y,z) = 0} So for each (x,y,z) € C,

df(x,y,z) =0
— [2(x+y+z-1) 2(x4+y+z—-1) 2(x+y+z-1)] =0
—x+ty+z—1=0

This is the equation of a plane. So C is the set of points in a plane. The critical values are the image
fC)={f(x,y,2): (x,y,2) EC}={(x+y+z—-1)*:x+y+z—1=0} = {0} n



b) Problem 11 on page 66, Section 2-2, Baby Do Carmo.

11. Show that the set S = {(x, y, z) € R?; z = x2 — y2} is a regular surface and
check that parts a and b are parametrizations for S:

a. x(u,v) = (4 + v, u — v, 4uw), (u,v) € R%,
*b. x(u, v) = (u cosh v, usinh v, u?), (4, v) € R2, u = 0.

Which parts of .S do these parametrizations cover ?

I'll do both part a and part b at once. To show that a, b are reegular you can show that the differential for
both functions is invertable. So for a the differential is,

1 1
da(u,v) =1 -1
4v  4u

This matrix is an invertable map everywhere because it has the minor { ] which is not invertable.

1 -1
Similarly, for b,

coshv wusinhv
db(u,v) = |sinhv wucoshov
2u 0

It was given that u # 0 for inputs to b so 2u is not a multiple of 0. Therefore, the columns of db are always
linearly independent. So the map is always invertable.

Now let’s show that the images of both functions are contained in S. let’s call the functions a, b rather than
calling both of them x. For all p = (u +v,u — v,4uv) € x(R?), (u+v)? — (u —v)? = u? + 2uv + v* — (u? —
2uv + v%) = 4uv. So z = x> — y? is satisified for at p. Therefore p € S. Similarly for b:

Vp = (ucoshov, usinhv,u?) € image(b),
(ucoshv)? — (usinhv)? = u?(cosh? v — sinh? v) = u?
To show that a4, b are homeomorphic we have to show they are bijective. First I do it for a. Suppose that
a(u1,v1) = a(up, vp). Then I will show that 1y, = 1y, v, = v;. This gives us the matrix equation,

M) =l
U1 02 |

{ul] = [uz (because A is invertible)
01 02 |

1 1
where A = [1 1

Showing b is bijective is left as an excersise. Then to show that 4,b are homeomorphic we observe that
they are continuous and have continuous inverses. To Show that the x covers V' (1 S for some neighborhood
V C Sjust. ]



c) Problem 1 on page 80, Section 2-3, Baby Do Carmo.
*1, Let S2 ={(x,y,2) € R*;x% 4 y2 4 z2 =1} be the unit sphere and let
A:S5? — 52 be the (antipodal) map A(x, y, z) = (—x, —y, —2z). Prove that 4
is a diffeomorphism.

First observe it is a bijection. Then observe that the jacobian is inverable everywhere.

10



d) Problem 8 on page 80, Section 2-3, Baby Do Carmo.

*8. Let S2={(x,y,2) e R¥;x2+4yy2+42z2=1} and H ={(x,y 2z) € R};
x2 4 y% — z2 = 1}. Denote by N = (0,0, 1) and § = (0, 0, —1) the north and
south poles of 52, respectively, and let F: §2 — {N} U {S} — H be defined as
follows: For each p € S2 — {N} U {S} let the perpendicular from p to the z
axis meet 0z at g. Consider the half-line / starting at g and containing p. Then
F(p) = 1 N H (Fig. 2-20). Prove that Fis differentiable.

Given a point p = (x,¥,z) € S*> we find g by projection onto the z-axis, so g = (0,0, z).
The half line joining g to p is parameterized by (tx, ty, z) where 0 < ¢. This line intersects
H when

2x% + tzyz —z2=1

solving for t we get

b= —

+ 12

V1+2z2 V1+z2
F(p) = z

V1 +2z2
x2

So

xl r
VAR

Let V = R® —{(x,v,2) | x = y = 0}, then V is an open subset of R? and F has continuous
partial derivatives on V. Therefore, F is differentiable on V

Since S? — ({N} U {S}) C V and S? and H are regular surfaces, we have, by Example
3 of section 2-3, that F|: S> — H is differentiable. .



e) Problem 10 on page 81, Section 2-3, Baby Do Carmo.

10. Let C be a plane regular curve which lies in one side of a siraight line r of the
plane and meets r at the points p, g (Fig. 2-21). What conditions should C sat-
isfy to ensure that the rotation of C about r generates an extended (regular)
surface of revolution?

-

Figure 2-21

The surface generated needs have parametrizations at the points p and 4. In addition
the curve C should have no self intersections. These conditions will be meet if the curve
formed by joining C with its reflection over r is a simple closed regular curve (see image
below).

More formally, let C’ be the curve given by the reflection of C over the line r. We require
that the curve C satisfy the condition that C U C’ is a simple regular closed curve.
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f) Problem 12 on page 81, Section 2-3, Baby Do Carmo.

12. Parametrized surfaces are often useful to describe sets £ which are regular sur-
faces except for a finite number of points and a finite number of lines. For in-
stance, let C be the trace of a regular parametrized curve &: (a, ) — R* which
does not pass through the origin O = (0, 0, 0). Let Z be the set generated by the

13




f continued)

Figure 2-22

displacement of a straight line / passing through a moving point p € C and the
fixed point 0 (a cone with vertex 0; see Fig. 2-22).

a, Find a parametrized surface x whose trace is X.

b. Find the points where x is not regular.

¢. What should be removed from Z so that the remaining set is a regular sur-
face?

Since it is not clear by the description, I will assume this surface is a double sided ”cone”
and extends to infinity in both directions.

a)

solution:

We can achieve a two dimensional parametrization whose trace is } |, by parametrizing
Cby u € (a,b) and the lines through O and points on C by v € (—o0, c0)

The parametrized surface, whose trace is }_, is defined as

x:(a,b) x R - R® where x(u,v)= (vay(u), vy (u), va, (1))

14



b)

solution:
We have that
ox , ox
3 va'(u) and 3 = o(u)
Which gives
dx . ox p
5 A P v(a' (1) A a(u))

Sog—i/\g—i=0whenv=00rcx’(u)/\oc(u)=0

So the critical points occur on the lines {(#,v) € (a,b) x R | &/(u) A a(u) = 0} and
on the u-axis.

)

solution:

To make ) a regular surface we should remove the image of the critical points. The
image of the u-axis is the point O = (0,0, 0)

The image of a line {(1,v) € (4,b) X R | &/(u) A a(u) = 0} is a line through the ori-
gin and the point x(u)

15



g) Problem 15 on page 82, Section 2-3, Baby Do Carmo.

a) It was shown in the book that all parameterizations of a surface are diffeomorphic to one another and for
any parameterizations «, 8, #~! o f is diffeomorphic.

b)

[ 8@t =1 [ (o) (lar
=1 [ 1ol
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