
Joseph Gardi, Tim Player
Differential Geometry

Homework 6
Monday, November 4 2019

A: Read:

• Baby Do Carmo, Differential Geometry of Curves and Surfaces: Sections 2-4, 2-5, 2-6 and Section 5-10
on Abstract surfaces (starting on page 425)

• Handouts 8 and 9

• Lecture Notes

B: Problems from Lectures

a) Let S be a subset of R3. Show that S is a regular surface if and only if S is locally diffeomorphic to R2.

Let S be a regular surface. Then, according to do Carmo, Proposition 2, Chapter 2.2, any point p ∈ S is the
inverse image of a regular value of some function f : U ⊂ R2 → S ⊂ R3:

S = {u, v, f (u, v)}.

Note here relabeling of axes may be necessary, so that the height function f gives the distance from the xy-,
yz-, or xz-plane.

Implicit in the term “regular value”, defined in Definition 2 of the same chapter, is that the function f is
differentiable and has an inverse that is also differentiable. So f is a diffeomorphism between S and R2.
Thus, at all points p ∈ S, the regular surface S is locally diffeomorphic to R2.

Conversely, let the subset S ⊂ R3 be locally diffeomorphic to R2. Then, there necessarily exists some
differentiable function F−1 : S→ U ⊂ R2, where both F and F−1 are differentiable. This satisfies conditions
1 and 2 (x is differentiable, x is a homeomorphism) of a regular surface.

The last condition, of regularity, requires more explanation. The differential dF : R2 → R3 is indeed one-
to-one since, if it were not, then F−1 would not be differentiable because the Jacobian determinants would
vanish simultaneously.

Therefore, S being locally diffeomorphic to R2 implies that S is a regular surface, completing the “if and
only if” condition.

�
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b) Find five examples of regular surfaces such that each of them can be represented as a surface of revolu-
tion. Write down specifically for each example the generating curve, the rotation axis, and the parameter-
ization (as a map) for the surface (including the domain of the map).

For the following examples, consider a closed curve C in the xz-plane with the parametrization

x = f (v), z = g(v), a < v < b, f (v) > 0.

We rotate C about the z-axis to generate the surface of revolution

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)).

Then, the following give regular surfaces.

f (v) = cos(v) + 5, g(v) = sin(v), 0 < v < 2π

f (v) = cos(v− 5) + 5, g(v) = sin(v), 0 < v < 2π

f (v) = cos(v) + 5, g(v) = 2 sin(v), 0 < v < 2π

f (v) = cos(2v) + 5, g(v) = sin(2v), 0 < v < π

f (v) = cos(2v) + 5, g(v) = sin(2v), 2π < v < 4π

For all the above, 0 < u < 2π. Note that, in general, the generating curve does not need to be closed. �
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C: Other Problems

a) Problem 10 on page 81, Section 2-3, Baby Do Carmo.

To result in a regular surface, the C should be perpendicular to r at p and q (otherwise an irregular pinch
point would occur). Furthermore, C should be non-self-intersecting. �
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b) Problem 9 on page 89, Section 2-4, Baby Do Carmo.

To be regular, x must be differentiable, x must be a homeomorphism, and dxq must be one-to-one for each
q ∈ U. This is the case.

Differentiable Clearly, x is differentiable.

Homeomorphism x is a continuous function, and the inverse

u(x, y, z) = z/a, v(x, y, z) =
√

x2 + y2

is also continuous. Note that we may define other functions for u.

Regularity For each point q = (u, v) ∈ R2, the differential

dxq =

−v sin u cos u
v cos u sin u

a 0


is one-to-one because the Jacobian determinants never vanish simultaneously.

∂(x, y)
∂(u, v)

= −v (Vanishes iff v = 0.)

∂(x, z)
∂(u, v)

= −a cos u (Vanishes iff u = 2πn + π.)

∂(y, z)
∂(u, v)

= −a sin u (Vanishes iff u = 2πn.)

Clearly, the latter two can never vanish simultaneously. Therefore, the parametrized surface is regular.

Normal Vector First, an exercise in imagination. Close your eyes. (Okay, first finish reading this. Then close
your eyes.)

Imagine you are walking up a spiral staircase with a thin rod around the middle. The staircase, of course, is
the given helicoid and the thin rod is the z-axis. Now, step inward toward the thin rod. You might stumble.
Why? Because the length of each step shrinks as you progress radially inward, yet the rise associated with
each step remains the same. The closer in you get, the steeper the steps seem to become. Let’s formalize
that.

Define the normal vector N(u, v) = xu ∧ xv. Then,

N(u, v) =

∣∣∣∣∣∣
i j k

−v sin u v cos u a
cos u sin u 0

∣∣∣∣∣∣ =
a sin u

a cos u
−v

 .

This vector tells us the tangent of the angle θ between the normal vector and the z-axis (AKA, the steepness
of the spiral staircase). Reading directly off the coordinates, we can see that the projection of N onto the
z-axis is −v, while the component orthogonal to the z-axis has magnitude a. Therefore, tan(θ) = a

v .
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Substituting α = 90− θ gives the angle of the helicoid surface (not its normal) relative to the z-axis and
yields the desired proportional relationship. �
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c) Problem 15 on page 90, Section 2-4, Baby Do Carmo.

Suppose that two points p and q on the surface S, connected by a curve α : t ∈ (0, ε) → S, have normals
passing through a fixed point c.

Then, we claim that p and q must both be the same distance from c.

To prove this, suppose that p and q were not the same distance from c. Then, along the curve α, the distance
from d would change. Let r(x) be the distance of a point x from d. By the mean value theorem, there exists
some value t ∈ (0, ε) such that dr

dt 6= 0.

Yet if, at some point t, dr
dt 6= 0, this implies that the normal would not pass through c, a contradiction.

Therefore, p and q must have the same distance from c, and furthermore all points along α must be the
same distance from c.

The above conclusion implies that any two points on the surface are connected by a circular arc. Therefore,
the surface is a sphere. �

Figure 1: A picture of points p, q, and α(t). Note, visually, how the existence of nonzero dr/dt induces a
skew in the normal line as the tangent α′(t) contains a component in the r̂ direction, making it impossible
for the surface to be normal to c there.
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d) Problem 18 on page 90, Section 2-4, Baby Do Carmo.

Let ψ : U ⊂ R2 → V ⊂ P be a parametrization for P in a small neighborhood around p. That such a function
exists is a property of regular surfaces. Let ψ−1(p) = q = (u0, v0).

Plainly, ψ(q) = p ∈ S ∩ P. That is, the mapping ψ takes q to the plane P as well as the surface S.

To prove the desired claim, we will show that the differential dψp, whose columns lie within the tangent
plane of S at p, describes the plane P. We will prove this by contradiction.

Suppose that the columns of dψp = [ψu, ψv] did not lie within P. Then, the unit normal vector of S,

N(u0, v0) =
ψu ∧ ψv

|ψu ∧ ψv|
,

would differ from the normal vector to the plane p. This would require that P intersect S at more than a
single point, as the intersection of two non-parallel planes is a line. (Locally, S behaves as the plane Tp. It is
unavoidable that Tp being nonparallel to P would result in a local multi-point intersection of S and P.)

Thus, N(u0, v0) cannot be different from the unit normal of plane P; it must be the same. Since P has the
same normal vector as S at p, and p ∈ U ∩ S, P coincides with the tangent plane of S at p.

A better proof is given by Professor Lee at

https://math.stackexchange.com/questions/892278/if-a-plane-intersects-a-regular-surface-at-exactly-one-
point-then-it-is-the-tan?newreg=1b0c86190e854719923f1b920b3125ea.

However, the proof I provided is my own. I’m curious about whether my justification in the parentheses is
adequate.

�
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e) Problem 1 on page 99, Section 2-5, Baby Do Carmo.

We will find the xu, xv for each problem. From there we find E =< xu, xu >, F− < xu, xv >, G =< uv, uv >.
Then the first fundamental form is,

Ip((u′, v′)) = E(u′)2 + 2Fu′v′ + G(v′)2

where p is a point on the surface.

(a) xu = (a cos u cos v, b cos u sin v,−c sin u), xv = (−a sin u sin v, sin u cos v, 0).

(b) xu = (a cos v, b sin v, 2u), xv = (−au sin v, bu cos v, 0)

�
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f) Problem 3 on page 99, Section 2-5, Baby Do Carmo.

The parameterization for the surface is,

π−1(u, v) =


4u

u2+v2+4
4v

u2+v2+4
2(u2+v2)
u2+v2+4


Then,

π−1
u =


4

u2+v2+4 −
4u

(u2+v2+4)2 · 2u

− 4v
(u2+v2+4)2 · 2u

4u
u2+v2+4 −

2(u2+v2)
(u2+v2+4)2 · 2u



π−1
v =


− 4u

(u2+v2+4)2 · 2v
4

u2+v2+4 −
4v

(u2+v2+4)2 · 2v
4v

u2+v2+4 −
2(u2+v2)

(u2+v2+4)2 · 2v


Then calcualate the first fundamental form as described in the last problem.
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g) Problem 9 on page 100, Section 2-5, Baby Do Carmo.
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D: Extra Credit Problems

a) Let T ⊂ R3 be a torus of revolution with center in (0, 0, 0) ∈ R3 and let A(x, y, z) = (−x,−y,−z). Let K
be the quotient space of the torus T by the equivalence relation p ∼ A(p). Can you tell what surface K is?
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b) Show that K is a differentiable 2-dimensional manifold.
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c) Show that K is non orientable in two different ways.
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