[^0]B.a) Carry out the details for Example 5, page 162, Baby Do Carmo. (Including the application to a geometric interpretation of the Dupin indicatrix, that is from page 164 to 165, Baby Do Carmo.)

C.a) Problem 2 on page 151, Section 3-2, Baby Do Carmo.

Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar

Let S be the surface, let $N(p)$ be the orientation at a point $p \in T_{p}(S)$. Let the curve be $\alpha(t)$. This curve is in the intersection of our surface and our plane. For any point $\alpha\left(t_{0}\right)$ on the curve the tangent plane is always the same. Therefore $d N\left(\alpha\left(t_{0}\right)\right)_{\alpha^{\prime}\left(t_{0}\right)}=\overrightarrow{0}$. Then let $a=\frac{\alpha^{\prime \prime}\left(t_{0}\right)}{\left\|\alpha^{\prime \prime}\left(t_{0}\right)\right\|}$. So a is a unit vector in $T_{\alpha\left(t_{0}\right)}(S)$ perpindicular to $\alpha^{\prime}\left(t_{0}\right)$. Then let $b=d N\left(\alpha\left(t_{0}\right)\right)_{a}$. Then gaussian curvature is $\operatorname{det}\left(d N\left(\alpha\left(t_{0}\right)\right)\right)=0$. Therefore, the curve is either parabolic or planar.

C.b) Problem 6 on page 151, Section 3-2, Baby Do Carmo.

Show that the sum of the normal curvatures for any pair of orthogonal directions, at a point $p \in S$, is constant.

Let $\mathbf{x}_{u}, \mathbf{x}_{v} \in T_{p}(S)$ be an orthonormal basis for $T_{p}(S)$. Let $a, b=a_{1} \mathbf{x}_{u}+a_{2} \mathbf{x}_{v}, b_{1} \mathbf{x}_{u}+b_{2} \mathbf{x}_{v} \in$ $T_{p}(S)$ be a pair of orthogonal vectors. The sum of their normal curvatures is,

$$
\begin{aligned}
&-<d N_{p}(a), a>-<d N_{p}(b), b>=-<a_{1} d N_{p}\left(\mathbf{x}_{u}\right)+a_{2} d N_{p}\left(\mathbf{x}_{v}\right), a_{1} \mathbf{x}_{u}+a_{2} \mathbf{x}_{v}> \\
&-<b_{1} d N_{p}\left(\mathbf{x}_{u}\right)+b_{2} d N_{p}\left(\mathbf{x}_{v}\right), b_{1} \mathbf{x}_{u}+b_{2} \mathbf{x}_{v}> \\
&=-\left(a_{1}^{2}<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{u}>+\right. \\
& a_{1} a_{2}<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{v}>+ \\
& a_{2} a_{1}<d N_{p}\left(\mathbf{x}_{v}\right), \mathbf{x}_{u}>+ \\
& a_{2}^{2}<d N_{p}\left(\mathbf{x}_{v}\right), \mathbf{x}_{v}>+ \\
& b_{1}^{2}<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{u}>+ \\
& b_{1} b_{2}<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{v}>+ \\
& b_{2} b_{1}<d N_{p}\left(\mathbf{x}_{v}\right), \mathbf{x}_{u}>+ \\
&\left.b_{2}^{2}<d N_{p}\left(\mathbf{x}_{v}\right), \mathbf{x}_{v}>\right) \\
&=-\left(\left(a_{1}^{2}+b_{1}^{2}\right)<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{u}>+2\left(a_{1} a_{2}+b_{1} b_{2}\right)<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{v}>+\left(a_{2}^{2}+b_{2}^{2}\right)<d N_{p}\left(\mathbf{x}_{v}\right), \mathbf{x}_{v}>\right) \\
&=-\left(\left(a_{1}^{2}+a_{2}^{2}\right)<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{u}>+2\left(a_{1} a_{2}-a_{2} a_{1}\right)<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{v}>+\left(a_{2}^{2}+a_{1}^{2}\right)<d N_{p}\left(\mathbf{x}_{v}\right), \mathbf{x}_{v}>\right) \\
&=-\left(<d N_{p}\left(\mathbf{x}_{u}\right), \mathbf{x}_{u}>+<d N_{p}\left(\mathbf{x}_{v}\right), \mathbf{x}_{v}>\right)
\end{aligned}
$$

So the sum of the curvatures does not depend on the pair chosen.

C.c) Problem 8 on page 151, Section 3-2, Baby Do Carmo.

Desribe the region of the unit sphere covered by the Gauss map of the following surfaces:
(a) Paraboloid of revolution $z=x^{2}+y^{2}$
(b) Hyperboloid of revolution $x^{2}+y^{2}-z^{2}=1$
(c) Catenoid $x^{2}+y^{2}=\cosh ^{2} z$
(a) The bottom hemisphere
(b) the entire sphere

C.d) Problem 17 on page 152, Section 3-2, Baby Do Carmo.

Show that if $H \equiv 0$ on S and S has no planar points, then the Gauss map $N: S \rightarrow S^{2}$ has the following property

$$
\left\langle d N_{p}\left(w_{1}\right), d N_{p}\left(w_{2}\right)\right\rangle=-K(p)\left\langle w_{1}, w_{2}\right\rangle, \text { for all } p \in S \text { and all } w_{1}, w_{2} \in T_{p}(S)
$$

Show that the above condition implies that the angle of two intersecting curves on S and the angle of their spherical images (cf. Exercise 9) are equal up to a sign.

For reference
Exercise 9: Prove that
(a) The image $N \circ \alpha$ by the Gauss map $N: S \rightarrow S^{2}$ of a parametrized regular curve $\alpha: I \rightarrow S$ which contains no planar or parabolic points is a parametrized regular curve on the sphere S^{2} (called the spherical image of α).
(b) If α is a line of curvature, and k is its curvature at p, then

$$
k=\left|k_{n} K_{N}\right|
$$

where k_{n} is the normal curvature at p along the tangent line of C and k_{N} is the curvature of the spherical image $N(C) \subset S^{2}$ at $N(p)$.

[^0]: A.a) Write up a proof for the Key Theorem on page 216, Baby Do Carmo.

