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Linear Algebra Review

Due date:

1. For which of the following matrices are you guaranteed a real diagonal form or no real
diagonal form at all without first determining the existence of an eigenbasis? Why?

A =

 5 0 −1
0 3 3
−1 3 0

 B =

2 5 3
0 3 0
0 0 2

 C =

(√
3
2
−1

2
1
2

√
3
2

)

D =

(
0 1
−1 0

)
E =

(
1 a
0 1

)
F =

(
1 3
2 2

)

Solution. (a) We are guaranteed a real diagonal form without first determining the
existence of an eigenbasis because A is symmetric.

(b) We are not guaranteed a real diagonal form. Since the eigenvalue 2 has multiplicity
2, we must determine wither there are 2 linearly independent eigenvectors for the
eigenspace V2.

(c) This matrix represents a rotation by 30◦, so we know that there is no real diagonal
form.

(d) This matrix represents a rotation by 90◦, so we know that there is no real diagonal
form.

(e) We know that there is no real diagonal form because E represents the shear

(x, y) 7→ (x+ ay, y).

That is, only the x-axis is invariant; everything else has been moved left or right.

(f) We find all the eigenvalues of F :

0 = det(F − λI) =

∣∣∣∣1− λ 3
2 2− λ

∣∣∣∣ = λ2 − 3λ− 4 = (λ− 4)(λ+ 1).

Hence, the eigenvalues are 4 and −1. Since these are distinct, we are guaranteed
a real diagonal form.

2. Let

A =

 1 0 −4
0 5 4
−4 4 3

 .
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(a) Find the eigenvalues and corresponding eigenvectors of A.

Solution. We first find the characteristic equation of A:

0 = det(A− λI) =

∣∣∣∣∣∣
1− λ 0 −4

0 5− λ 4
−4 4 3− λ

∣∣∣∣∣∣ = (3− λ)(λ− 9)(λ+ 3).

Thus, the eigenvalues are λ1 = 3, λ2 = 9, λ3 = −3. Since all the eigenvalues are
distinct, A can be diagonalized.

For λ1 = 3, we have1− 3 0 −4
0 5− 3 4
−4 4 3− 3

 −→

−2 0 −4
0 2 4
−4 4 0

−→−2R1+R3
−2R2+R3

−2 0 −4
0 2 4
0 0 0

 −→
1 0 2

0 1 2
0 0 0


⇒ v1 =

−2
−2
1

 .

Similarly, for λ2 = 9 we have v2 =

 1
−2
−2

 and for λ3 = −3 we have v3 =

−2
1
−2

 .

(b) Is A similar to a diagonal matrix? If so, find a nonsingular matrix P such
that P−1AP is diagonal. Is P unique? Explain.

Solution. Since A is symmetric, it can be diagonalized. Let

P = (v1, v2, v3) =

−2 1 −2
−2 −2 1
1 −2 −2

 .

Then

P−1AP =

3 0 0
0 9 0
0 0 −3

 = D.

However, P is not unique, since the eigenvectors associated to an eigenvalue are
not unique.

(c) Find the eigenvalues of A−1.
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Solution. Recall that, if A is invertible and has eigenvalue λ 6= 0, then 1/λ is
an eigenvalue of A−1. In our case, A is invertible since detA = detPDP−1 =
detD = −81 6= 0 (and all the eigenvalues are nonzero). Thus, A−1 has eigenvalues
1/3, 1/9,−1/3.

(d) Find the eigenvalues and corresponding eigenvectors of A2.

Solution. If λ is a nonzero eigenvalue of A with associated eigenvector ξ, then

A2ξ = A(λξ) = λAξ = λ2ξ.

Hence, λ2 is an eigenvalue of A2 with associated eigenvector ξ. Hence, the eigen-

values of A2 are 9, 81, and 9, and their associated eigenvectors are v1 =

−2
−2
1

,

v2 =

 1
−2
−2

, and v3 =

−2
1
−2

 .

3. Let L : P2 → P2 be defined by

L(a+ bt+ ct2) = (2a− c) + (a+ b− c)t+ ct2.

(a) Find the matrix A representing L with respect to the standard basis of P2.

Solution. We note that L(1) = 2 + t + 0t2, L(t) = 0 + t + 0t2, and L(t2) =
−1 + (−1)t+ t2. Hence,

A =

2 0 −1
1 1 −1
0 0 1

 .

(b) Find all the eigenvalues of A. For each eigenvalue, find all eigenvectors asso-
ciated with that eigenvalue.

Solution. Expanding along the bottom row, we compute

det(A− λI) =

∣∣∣∣∣∣
2− λ 0 −1

1 1− λ −1
0 0 1− λ

∣∣∣∣∣∣ = (1− λ)(2− λ)(1− λ).

Hence, the eigenvalues are λ1 = 1 (multiplicity 2) and λ2 = 2.
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Substituting in λ1 = 1 and row-reducing, we find2− 1 0 −1
1 1− 1 −1
0 0 1− 1

 −→
1 0 −1

1 0 −1
0 0 0

 −→
1 0 −1

0 0 0
0 0 0

 .

This system has solution x = z, y = s = free, and z = t = free, orxy
z

 =

ts
t

 = t

1
0
1

+ s

0
1
0

 .

Hence, eigenvalues associated with λ1 = 1 are spanned by v1 =

1
0
1

 and v2 =0
1
0

. For λ2 = 2, we may similarly compute the eigenvector v3 =

1
1
0

.

(c) Find a matrix P such that P−1AP is diagonal.

Solution. Let

P = [v1 v2 v3] =

1 0 1
0 1 1
1 0 0

 .

Then

P−1AP =

1 0 0
0 1 0
0 0 2

 = D.

(d) Find An where n is an integer. What is L100?

Solution. Since A = PDP−1, we have

An = (PDP−1)n

= PDnP−1

=

1 0 1
0 1 1
1 0 0

1n 0 0
0 1n 0
0 0 2n

 0 0 1
−1 1 1
1 0 −1


=

 2n 0 1− 2n

2n − 1 1 1− 2n

0 0 1

 .

Hence,

L100(a+ bt+ ct2) =
(
a2100 + c(1− 2100)

)
+
(
a(2100 − 1) + b+ c(1− 2100)

)
t+ ct2.
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4. Let A be an n× n real matrix.

(a) Prove that the coefficient of λn−1 in the characteristic polynomial of A is given
by − trA.

Solution. Expanding along the first row of λIn−A, we see that the characteristic
polynomial pA(λ) = λn + a1λ

n−1 + a2λ
n−2 + · · ·+ an−1λ+ an of A is given by

det(λIn − A) =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣
= (λ− a11)C11 + (−a12)C12 + · · ·+ (−a1n)C1n,

where Cij is the i, j cofactor of λIn − A. Now, the expression involving λn−1 in
the characteristic equation must arise from the first term in this sum, since every
other cofactor will contain only n− 2 factors of λ. Applying the same argument
to our computation of

C11 =

∣∣∣∣∣∣∣∣∣
λ− a22 −a23 · · · −a2n
−a32 λ− a33 · · · −a3n

...
...

. . .
...

−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣ ,
we see that that the expression involving λn−1 in the characteristic polynomial
must arise from the product

(λ− a11)(λ− a22) · · · (λ− ann) = λn − (a11 + a22 + · · ·+ ann)λn−1 + · · · .

Thus, a1 = −(a11 + a22 + · · ·+ ann) = − trA.

(b) Prove that trA is the sum of the eigenvalues of A.

Solution. If λ1, λ2, . . . , λn are the eigenvalues of A, then λ − λi (i = 1, 2, . . . , n)
are factors of the characteristic polynomial

det(λIn − A) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an

= (λ− λ1)(λ− λ2) · · · (λ− λn) (1)

= λn − (λ1 + λ2 + · · ·+ λn)λn−1 + · · ·+ (−1)nλ1λ2 · · ·λn.

Thus, a1 = −λ1 − λ2 − · · · − λn = − trA. Hence, the trace of A is the sum of the
eigenvalues of A.
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(c) Prove that the constant coefficient of the characteristic polynomial of A is ±
the product of the eigenvalues of A.

Solution. We observe that in Eq. 1 above, the constant term is an = (−1)nλ1λ2 · · ·λn.
Also note that if λ = 0, then we have

(−1)n detA = det(−A)

= an

= (−1)n detA

= (−1)nλ1λ2 · · ·λn.

Hence, detA is the product of the eigenvalues.

5. Let A be a 5× 5 matrix. Suppose A has distinct eigenvalues −1, 1,−10, 5, 2.

(a) What is detA? What is trA?

Solution. From the previous problem, we know that detA = −1 × 1 × (−10) ×
5× 2 = 100 and trA = −1 + 1 + (−10) + 5 + 2 = −3.

(b) If A and B are similar, what is detB? Why?

Solution. Since A and B are similar, there is some invertible matrix P such that
B = P−1AP . Hence,

detB = det(P−1AP ) = (detP )−1(detA)(detP ) = detA.

Thus, detB = 100.

(c) Do you expect that all eigenvectors of A are mutually orthogonal? Why?

Solution. No, we can only expect that all the eigenvectors of A are linearly in-
dependent. However, since A is not symmetric, we are not guaranteed that they
eigenvectors are mutually orthogonal.

6. This is an extra credit-type problem. Let p1(λ) be the characteristic polynomial of A11

and p2(λ) the characteristic polynomial of A22. What is the characteristic polynomial
of each of the following partitioned matrices?

A =

(
A11 0
0 A22

)
B =

(
A11 A21

0 A22

)
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Solution. Let pA(λ) and pB(λ) be the respective characteristic polynomials of A and
B. Then

pA(λ) = |λI − A|

=

∣∣∣∣λI − A11 0
0 λI − A22

∣∣∣∣
= |λi − A11||λI − A22|

= p1(λ)p2(λ),

where p1(λ) is the characteristic polynomial of A11 and p2(λ) is the characteristic
polynomial of A22. Similarly, pB(λ) = p1(λ)p2(λ).

7. Prove key theorems

(a) Prove that similar matrices have the same eigenvalues.

Solution. Let B = P−1AP . Then

det(λI −B) = det(λI − P−1AP )

= det(λP−1IP − P−1AP )

= det(P−1(λi− A)P )

= det(P−1) det(λI − A) detP

= det(λI − A),

since detP−1 = (detP )−1. Thus, similar matrices have the same eigenvalues.

(b) Let λ1, λ2, . . . , λk be distinct
eigenvalues of a matrix A with associated eigenvectors x1, x2, . . . , xk. Prove
that x1, x2, . . . , xk are linearly independent.

Solution.

Let a1, a2, . . . ak ∈ R, and suppose

a1x1 + a2x2 + · · ·+ akxk = 0. (2)

We prove by induction on k that ai = 0 for i = 1, 2, . . . , k. If k = 1, there is
nothing to prove since any nonzero vector is linearly independent. Now, suppose
that the statement holds for k − 1. Applying A to both sides of Eq. 2, we see
that

0 = a1Ax1 + a2Ax2 + · · ·+ akAxk

= a1λ1x1 + a2λ2x2 + · · ·+ akλkxk. (3)
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Similarly, multiplying both sides of Eq. 2 by λk, we see that

0 = a1λkx1 + a2λkx2 + · · ·+ akλkxk. (4)

Then, subtracting Eq. 3 from Eq. 4, we have

0 = a1(λk − λ1)x1 + a2(λk − λ2)x2 + · · ·+ ak−1(λk − λk−1)xk−1.

By the induction hypothesis, x1, x2, . . . , xk−1 are linearly independent, so

ai(λk − λi) = 0

for i = 1, 2, . . . , k − 1. However, the λi are distinct, so λi 6= λk for k 6= i. Thus,
a1 = a2 = · · · = ak−1 = 0.

Substituting these values into Eq. 2, we find that akxk = 0. Since xk 6= 0, we
must have ak = 0. Thus, a1 = a2 = · · · = ak = 0, so x1, x2, . . . , xk are linearly
independent, as desired.

(c) Let L : Rn → Rn be a linear transformation defined by L(X) = AX. Let
Vλ = {ξ ∈ Rn | L(ξ) = λξ}. Prove Vλ is a subspace of Rn. (This subspace is
called the eigenspace associated with λ.)

Solution. There are two ways to show that Vλ is a subspace of Rn. First, we
directly show that Vλ satisfies the definition of a subspace. Suppose ξ, η ∈ Vλ.
Then

L(ξ + η) = L(ξ) + L(η) = λξ + λη = λ(ξ + η),

so ξ + η ∈ Vλ. Similarly, if c ∈ R, then

L(cξ) = cL(ξ) = cλξ = λ(cξ),

so cξ ∈ Vλ. Hence, Vλ is a subspace of Rn by definition.

Alternatively, we note that

Vλ = {ξ ∈ Rn | L(ξ) = λξ}
= {ξ ∈ Rn | Aξ = λξ}

= {ξ ∈ Rn | Aξ − λξ = 0}
= {ξ ∈ Rn | (A− λI)ξ = 0}

= null(A− λI).

Since the nullspace of an n× n matrix is a subspace of Rn, it follows that Vλ is a
subspace of Rn.
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(d) Let λ be an eigenvalue of A with multiplicity r. Let dimVλ = s. Prove s ≤ r.
(That is, the dimension of the eigenspace associated with λ is at most the
multiplicity of λ.)

Solution. Let {x1, x2, . . . , xs} be a basis of Vλ. We extend it to a basis {x1, x2, . . . , xs, xs+1, . . . , xn}
of Rn. Then

L(x1) = λx1,

L(x2) = λx2,
...

L(xs) = λxs,

L(xs+1) = as+1,1x1 + · · ·+ as+1,sxs + as+1,s+1xs+1 + · · ·+ as+1,nxn
...

L(xn) = an,1x1 + · · ·+ an,sxs + an,s+1xs+1 + · · · an,nxn.
Thus, the matrix representation of L associated with the basis {x1, x2, . . . , xn} is

M =



λ 0 · · · 0 as+1,1 as+2,1 · · · an,1
0 λ · · · 0 as+1,2 as+2,2 · · · an,2
...

...
. . .

...
...

...
. . .

...
0 0 · · · λ as+1,s as+2,s · · · an,s
0 · · · · · · 0 as+1,s+1 · · · · · · an,s+1
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · · · · 0 as+1,n · · · · · · an,n


=

(
λIs A1

0 A2

)
.

Note that M and A are similar, since they represent the same linear transforma-
tion. Hence, the characteristic polynomial of L is

f(x) = det(xI − A)

= det(xI −M)

=

∣∣∣∣(x− λ)Is −A1

0 xIn−s − A2

∣∣∣∣
= (x− λ)s det(xIn−s − A2)

= (x− λ)sg(x).

Since g(x) might contain a factor of (x − λ), it follows that the multiplicity r of
λ is greater than or equal to s. Hence, s ≤ r.

8. Inner products space: Let

u =

1
0
1

 , v =

 1
−1
0

 , w =

 2
2

−
√

6

 .
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(a) Find ‖u‖, ‖v‖. Find a unit vector in the direction of u.

Solution. We compute ‖u‖ =
√

12 + 02 + 12 =
√

2 and ‖v‖ =
√

12 + (−1)2 + 02 =√
2. Hence, the desired unit vector is

û =
u

‖u‖
=

1√
2

1
0
1

 .

(b) Find the distance between v and w.

Solution. The distance between v and w is

‖v − w‖ =

√
(1− 2)2 + (−1− 2)2 + (0− (−

√
6))2 =

√
1 + 9 + 6 = 4.

(c) Find angle between u and v.

Solution. Let θ denote the desired angle, and recall that u · v = ‖u‖‖v‖ cos θ.
Hence,

cos θ =
u · v
‖u‖‖v‖

=
1√
2
√

2
=

1

2
.

By convention, we take 0 ≤ θ ≤ π, so θ = arccos(1/2) = π/3.

(d) Show that v and w are orthogonal.

Solution. Since v · w = 1 × 2 + (−1) × 2 + 0 × (−
√

6) = 2 − 2 = 0, v and w are
orthogonal.

9. Useful facts for analysis

(a) Prove the Cauchy-Schwarz Inequality: If u and v are any vectors in an inner
product space V , then 〈u, v〉2 ≤ ‖u‖2‖v‖2.

Solution. Let u and v be vectors in an inner product space V . Since the proof is
trivial if v = 0, we may assume that v 6= 0. Consider the orthogonal projection

z = u− 〈u, v〉
〈v, v〉

v.
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Since z and v are orthogonal, we may apply the Pythagorean Theorem to

u = z +
〈u, v〉
〈v, v〉

v

to find

‖u‖2 = ‖z‖2 +
〈u, v〉2

〈v, v〉2
‖v‖2 = ‖z‖2 +

〈u, v〉2

‖v‖2
≥ 〈u, v〉

2

‖v‖2
.

Hence, 〈u, v〉2 ≤ ‖u‖2‖v‖2.

(b) Consider Rn with the standard inner product. Let u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn). Prove that(

n∑
i=1

uivi

)2

≤

(
n∑
i=1

u2i

)(
n∑
i=1

v2i

)
.

Solution. Note that (
∑n

i=1 uivi)
2 = 〈u, v〉,

∑n
i=1 u

2
i = 〈u, u〉 = ‖u‖2, and

∑n
i=1 v

2
i =

〈v, v〉 = ‖v‖2. Thus, by the Cauchy-Schwartz Inequality, the inequality holds.

(c) Let V be the vector space of all continuous real-valued functions on the unit

interval [0, 1] with inner product 〈f, g〉 =
∫ 1

0
f(t)g(t) dt. Prove(∫ 1

0

f(t)g(t) dt

)2

≤
(∫ 1

0

f 2(t) dt

)(∫ 1

0

g2(t) dt

)
.

Solution. Note that
(∫ 1

0
f(t)g(t)dt

)2
= 〈u, v〉,

∫ 1

0
f 2(t)dt = 〈u, u〉 = ‖u‖2, and∫ 1

0
g2(t)dt = 〈v, v〉 = ‖v‖2. Thus, by the Cauchy-Schwartz Inequality, the in-

equality holds.

10. Positive definiteness: Let C = [cij] be an n × n symmetric matrix and let V be an
n-dimensional vector space with ordered basis S = {u1, u2, . . . , un}. For v = a1u1 +
a2u2 + · · ·+ anun and w = b1u1 + b2u2 + · · ·+ bnun in V , define

(v, w) =
n∑
i=1

n∑
j=1

aicijbj.

Prove that this defines an inner product on V if and only if C is a positive-definite
matrix.
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Solution. Let x = [v]S and y = [w]S be the coordinate (column) vectors of v and w,
respectively, with respect to the basis S. We note that

(v, w) =
n∑
i=1

n∑
j=1

aicijbj = xTCy.

⇒

Suppose that (v, w) defines an inner product on V . Then (v, v) ≥ 0 and vanishes if
and only if v = 0, so xTCx ≥ 0 if x 6= 0 and xTCx = 0 only if x = 0. Hence, C is
positive-definite by definition.

⇐

Conversely, suppose C is positive-definite. First, it follows by definition that (v, v) =
xTCx ≥ 0, and vanishes if and only if x = 0. Second, since C is symmetric,

(v, w) = xTCy = 〈x, Cy〉 = 〈Cx, y〉 = 〈y, Cx〉 = yTCx = (w, v),

where 〈·, ·〉 denotes the standard inner product on Rn. Third, if z = [u]S, then

(u+ v, w) = [u+ v]TSC[w]S

= (zT + xT )Cy

= zTCy + xTCy

= (u,w) + (v, w).

Finally, if r ∈ R, then

(rv, w) = [rv]TSCy = rxTCy = r(v, w).

Thus, if C is positive-definite, then (v, w) =
∑n

i=1

∑n
j=1 aicijbj defines an inner product

on V .

11. Let V be the vector space of all continuous functions on the interval [−π, π]. For f
and g in V , define 〈f, g〉 =

∫ π
−π f(t)g(t) dt.

(a) Show that this defines an inner product on V .

Solution. Let f, g, h ∈ V and r ∈ R. First, note that 〈f, f〉 =
∫ π
−π f

2(t) dt ≥ since

f 2(t) ≥ 0, and vanishes if and only if f(t) = 0. Second, since multiplication of
functions is commutative,

〈f, g〉 =

∫ π

−π
f(t)g(t) dt =

∫ π

−π
g(t)f(t) = 〈g, f〉.
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Third, by the distributive law for functions, we have

〈f + g, h〉 =
∫ π
−π(f + g)h dt

=
∫ π
−π(fh+ gh) dt

=
∫ π
−π fh dt+

∫ π
−π gh dt

= 〈f, h〉+ 〈g, h〉.

Finally, we have 〈rf, g〉 =
∫ π
−π rfg dt = r

∫ π
−π = r〈f, g〉. Hence, this defines an

inner product on V .

(b) Show that the following set is an orthogonal set:

{1, cos t, sin t, cos 2t, sin 2t, . . . , cosnt, sinnt, . . .}.

Solution. First, we note that for any positive integer n,
∫ π
−π cosnt dt =

∫ π
−π sinnt dt =

0. Hence, 1 is orthogonal to every other element of the set.

Next, we note that cosmt cosnt = cos(m+ n)t+ sinmt sinnt, so∫ π

−π
cosmt cosnt dt =

���
��

���
��: 0∫ π

−π cos(m+ n)t dt+
∫ π
−π sinmt sinnt dt

=
∫ π
−π sinmt sinnt dt.

However, using integration by parts, we find that∫ π

−π
cosmt cosnt dt =

���
���

���
�: 0[

1
n

cosmt sinnt
]π
−π + m

n

∫ π
−π sinmt sinnt dt

= m
n

∫ π
−π sinmt sinnt dt.

Form 6= n, this implies that
∫ π
−π sinmt sinnt dt = 0, and therefore

∫ π
−π cosmt cosnt dt =

0. Thus, each cosine element is orthogonal to every other cosine element, and each
sine element is orthogonal to every other sine element in this set.

Finally, consider
∫ π
−π sinnt cosmtdt. Since sin(α + β) = sinα cos β + cosα sin β,

we see that∫ π

−π
sinnt cosmtdt =

��
���

���
��: 0∫ π

−π sin(n+m)t dt−
∫ π
−π cosnt sinmtdt

= −
∫ π
−π cosnt sinmtdt.

On the other hand, sin(α− β) = sinα cos β − cosα sin β, so∫ π

−π
sinnt cosmtdt =

���
���

���
�: 0∫ π

−π sin(n−m)t dt+
∫ π
−π cosnt sinmtdt

=
∫ π
−π cosnt sinmtdt.

Hence,
∫ π
−π cosnt sinmtdt = 0 for arbitrary n,m. Thus, all elements in this set

are mutually orthogonal.
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(c) Convert the above set into an orthonormal set.

Solution. Since {1, cos t, sin t, cos 2t, sin 2t, . . . , cosnt, sinnt, . . .} is an orthogonal
set, we may obtain an orthonormal set by dividing each vector by its norm. We
first compute

‖1‖2 =
∫ π
−π 1 dt = 2π

‖ cosnt‖2 =
∫ π
−π cos2 nt dt =

∫ π
−π

1+cos 2nt
2

dt

= 1
2

[
���

���
��: 0∫ π

−π cos 2nt dt+
�
��
�* 2π∫ π

−π dt

]
= π

‖ sinnt‖2 =
∫ π
−π sin2 nt dt =

∫ π
−π

1−cos 2nt
2

dt = π.

Thus, we get an orthonormal basis{
1√
2π
,
cos t√
π
,
sin t√
π
,
cos 2t√

π
,
sin 2t√
π
, . . . ,

cosnt√
π
,
sinnt√

π
, . . .

}
.

12. A linear transformation L : V → V , where V is an n-dimensional Euclidean space, is
called orthogonal if 〈Lv, Lw〉 = 〈v, w〉.

(a) Let A be an n×n matrix. Show that A is orthogonal if and only if the columns
(and rows) of A form an orthonormal basis for Rn.

Solution. Since A is real, then A∗ = AT , where A∗ is the adjoint of A. Note that
〈Av,Aw〉 = 〈v,ATAw〉; hence, A is orthogonal if and only if ATA = I.

We may write A as (v1, v2, . . . , vn), where vi is the ith column of A. Then

ATA =


vT1

vT2
...

vTn


(
v1 v2 · · · vn

)
=


vT1 v1 vT1 v2 · · · vT1 vn

vT2 v1 vT2 v2 · · · vT2 vn
...

...
. . .

...

vTn v1 vTn v2 · · · vTn vn

 .

Thus, ATA = I if and only if

vTi vj = 〈vi, vj〉 =

{
i = j 1

i 6= j 0
,

that is, if and only if {v1, . . . , vn} is an orthonormal basis for Rn. The argument
for the rows is identical with vi and vTi interchanged.
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(b) Let S be an orthonormal basis for V and let the matrix A represent the
orthogonal linear transformation L with respect to S. Prove that A is an
orthogonal matrix.

Solution. Let S = {u1, u2, . . . , un} be an orthonormal basis for V , and let vi =
[Lui]S. Then

A =
(
[Lu1]S [Lu2]S · · · [Lun]S

)
=
(
v1 v2 · · · vn

)
.

Since L is orthogonal and S is orthonormal, we see that

vTi vj = 〈vi, vj〉 = 〈[Lui]S, [Luj]S〉 = 〈[ui]S, [uj]S〉 =

{
i = j 1

i 6= j 0
.

Thus by part (a), A is an orthogonal matrix.

(c) Prove that for any vectors u, v ∈ Rn, 〈Lu, Lv〉 = 〈u, v〉 if and only if for any
u ∈ Rn, ‖Lu‖ = ‖u‖.

Solution. Suppose 〈Lu, Lv〉 = 〈u, v〉. Then if v = u, we see that

‖Lu‖2 = 〈Lu, Lu〉 = 〈u, u〉 = ‖u‖2,

so ‖Lu‖ = ‖u‖. Conversely, if ‖Lu‖ = ‖u‖ for all u, then 〈Lu, Lu〉 = 〈u, u〉. If
u = v + w, then we may expand linearly to obtain

〈Lv, Lv〉+〈Lv, Lw〉+〈Lw,Lv〉+〈Lw,Lw〉 = 〈v, v〉+〈v, w〉+〈w, v〉+〈w,w〉. (5)

We note that 〈Lv, Lv〉 = 〈v, v〉 and 〈Lw,Lw〉 = 〈w,w〉. Furthermore, since
v, w ∈ Rn, it follows that 〈v, w〉 = 〈w, v〉. Thus, Eq. 5 becomes

2〈Lv, Lw〉 = 2〈v, w〉,

so 〈Lv, Lw〉 = 〈v, w〉 for all v, w ∈ Rn.

(d) Let L : V → V be an orthogonal linear transformation. Show that if λ is an
eigenvalue of L, then |λ| = 1.

Solution. Let λ be an eigenvalue of the orthogonal transformation L : V → V .
Since L is orthogonal, we know from part (c) that ‖Lv‖ = ‖v‖ for all v ∈ V .
Thus, for any nonzero eigenvector ξ associated with λ, we have

‖ξ‖ = ‖Lξ‖ = ‖λξ‖ = |λ|‖ξ‖.

Since ‖ξ‖ 6= 0, it follows that |λ| = 1.
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13. Let W be the subspace of the Euclidean space R4 with standard inner product with
basis S = {u1, u2, u3}, where

u1 =


1
1
1
0

 , u2 =


−1
0
−1
1

 , u3 =


−1
0
0
−1

 .

Transform S to an orthonormal basis T = {w1, w2, w3} using the Gram-Schmidt pro-
cess.

Solution. We define

w1 =
u1
‖u1‖

=
1√
3


1
1
1
0

 .

We then compute

v2 = u2 − 〈u2, w1〉w1

=


−1
0
−1
1

+
(

2√
3

)
1√
3


1
1
1
0



=


−1/3
2/3
−1/3

1

 ,

and

w2 =
v2
‖v2‖

=
1√
5/3


−1/3
2/3
−1/3

1

 =
1√
15


−1
2
−1
3

 .

Finally, we compute

v3 = u3 − 〈u3, w1〉w1 − 〈u3, w2〉w2

=


−1
0
0
−1

+
(

1√
3

)
1√
3


1
1
1
0

+
(

2√
15

)
1√
15


−1
2
−1
3



=


−4/5
3/5
1/5
−3/5


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and

w3 =
v3
‖v3‖

=
1√
35


−4
3
1
−3

 .

Thus, the desired orthonormal basis is

T =


1√
3


1
1
1
0

 ,
1√
15


−1
2
−1
3

 ,
1√
35


−4
3
1
−3


 .

14. Orthogonal diagnilization of symmetric matrices.

(a) Let

A =

−1 3 3
3 −1 3
3 3 −1

 .

Find a 3 × 3 matrix P with P−1 = P T such that P TAP = D, where D is a
3× 3 diagonal matrix.

Solution. We note that, since A is diagonal, we are guaranteed such a matrix P by
the real spectral theorem; moreover, any matrix whose columns are eigenvectors
of A and form an orthonormal basis of R3 will satisfy these conditions. To find P ,
therefore, we must first find all the eigenvalues of A. The characteristic equation
is

det(A− λI) = (5− λ)(4 + λ)2 = 0,

so the eigenvalues are λ1 = −4 (multiplicity 2) and λ2 = 5. We find that the
eigenspace associated with λ1 has basis

v1 =

−1
1
0

 , v2 =

−1
0
1

 ,

which we may convert to the orthonormal basis

u1 =
1√
2

−1
1
0

 , u2 =
1√
6

−1
−1
2


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using the Gram-Schmidt process. We also find the normal eigenvector associated
with λ2 = 5 is

u3 =
1√
3

1
1
1

 .

Thus, the desired matrix is

P =
(
u1 u2 u3

)
=

−1/
√

2 −1/
√

6 1/
√

3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3

 ,

and

D = P TAP =

−4 0 0
0 −4 0
0 0 5

 .

(b) (Extra credit) Show that all the eigenvalues of a real symmetric matrix are
real numbers.

Solution. Let ξ be a nonzero eigenvector of a real symmetric matrix A with asso-
ciated eigenvalue λ. Since A is real and symmetric, it is self-adjoint, and therefore
A∗ = A. Thus,

λ‖ξ‖2 = 〈λξ, ξ〉 = 〈Aξ, ξ〉 = 〈ξ, Aξ〉 = 〈ξ, λξ〉 = λ‖ξ‖2.

Since ‖ξ‖ 6= 0, it follows that λ = λ. Hence, λ is real.

(c) Show that if A is a symmetric real matrix, then eigenvectors that belong to
distinct eigenvalues of A are orthogonal.

Solution. Suppose A is a real, symmetric matrix and let u, v be eigenvectors of A
associated with the distinct eigenvalues λ and µ, respectively. By part (b), λ and
µ are both real. We note that A is self-adjoint, and therefore

λ〈u, v〉 = 〈λu, v〉 = 〈Au, v〉 = 〈u,Av〉 = 〈u, µv〉 = µ〈u, v〉.

Since λ 6= µ by assumption, it follows that 〈u, v〉 = 0. Hence, u and v are
orthogonal.

(d) Prove that a symmetric matrix A is positive-definite if and only if A = P TP
for a nonsingular matrix P .
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Solution. Suppose A is a positive-definite matrix with eigenvalues λ1, λ2, . . . , λn.
Since A is positive-definite, there is an orthonormal matrix Q such that

A = Q


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · 0

QT .

Since all the eigenvalues of a positive-definite matrix are positive, we may write

A = Q


√
λ1 0 · · · 0
0
√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn



√
λ1 0 · · · 0
0
√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn

QT

= QDDQT .

Let P = DQT . Then P T = (DQT )T = QDT = QD. Hence, A = P TP .

Conversely, suppose A = P TP . If x ∈ Rn, then

xTAx = xP TPx = (Px)T (Px) = 〈Px, Px〉 = ‖Px‖2.

Hence, xTAx > 0 if x 6= 0 and xTAx = 0 if x = 0. Thus, A is positive-definite.

(e) Prove that if the matrix A is similar to a diagonal matrix, then A is similar
to AT .

Solution. Since A is similar to a diagonal matrix, there is some invertible matrix
P and diagonal matrix D such that A = PDP−1. Thus,

AT = (P−1)TDTP T

= (P−1)TDP T

= (P−1)TP−1PDP−1PP T

= (P T )−1P−1APP T

= (PP T )−1A(PP T ).

Thus, for Q = PP T , A = Q−1AQ. Since P is invertible, so too is Q. Hence, A
and AT are similar.

15. Applications
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(a) (Applications to solving ODE systems): Consider two adjoining cells separated
by a permeable membrane and suppose that a fluid flows from the first cell to
the second one at a rate (in milliliters per minute) that is numerically equal to
three times the volume (in milliliters) of the fluid in the first cell. It then flows
out of the second cell at a rate (in milliliters per minute) that is numerically
equal to twice the volume in the second cell. Let x1(t) and x2(t) denote the
volumes of the fluid in the first and second cells at time t, respectively. Assume
that initially the first cell has 40 milliliters of fluid, while the second one has
5 milliliters of fluid. Find the volume of fluid in each cell at time t.

Solution. The change in volume of the fluid in each cell is the difference between
the amount flowing in and the amount flowing out. Since no fluid flows into the
first cell, we have

x′1(t) = −3x1(t),

where the minus sign indicates that the fluid is flowing out of the cell. The flow
3x1(t) from the first cell flows into the second cell. The flow out of the second cell
is 2x2(t). Thus, the change in volume of the fluid in the second cell is given by

x′2(t) = 3x1(t)− 2x2(t).

We therefore have the linear system, expressed in matrix form,

x′(t) =

(
x′1(t)

x′2(t)

)
=

(
−3 0
3 −2

)(
x1(t)
x2(t)

)
= Ax.

Since the matrix A is lower diagonal, we may read off the eigenvalues to be
λ1 = −3 and λ2 = −2. We compute the associated eigenvectors to be

v1 =

(
1
−3

)
, v2 =

(
0
1

)
.

Hence, the general solution is given by

x(t) = b1v1e
λ1t + b2v2e

λ2t

= b1

(
1
−3

)
e−3t + b2

(
0
1

)
e−2t.

From the initial condition

x(0) =

(
40
5

)
,

we find that b1 = 40 and b2 = 125. Thus, the volume of fluid in each cell at time
t is given by

x1(t) = 40e−3t

x2(t) = −120e−3t + 125e−2t.
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(b) (Markov chain) Consider a plant that can have red flowers (R), pink flowers
(P), or white flowers (W), depending upon the genotypes RR, RW, and WW.
When we cross each of these genotypes with a genotype RW, we obtain the
transition matrix

M =

0.5 0.25 0.0
0.5 0.5 0.5
0.0 0.25 0.5

 .

Suppose that each successive generation is produced by crossing only with
plants of RW genotype. When the process reaches equilibrium, what percent-
age of the plants will have red, pink, or white flowers?

Solution. Let v =

xy
z

 denote the equilibrium percentages of the plants, and

note that Mv = v. Rearranging, we can find v by solving the matrix equation
M − I = 0. This corresponds to the following system in three variables:

−0.5x + 0.25y = 0
0.5x − 0.5y + 0.5z = 0

0.25y − 0.5z = 0

Solving this systems yields the eigenvector v =

 x
2x
x

. Since the sum of the

entries of v must equal 1, we conclude that v =

0.25
0.5
0.25

. Thus, at equilibrium

1/4 of plants will have red flowers, 1/2 will have pink flowers, and 1/4 will have
white flowers.

16. Applications to Fibonacci sequence

(a) Recall xn = xn−1 + xn−2.
To use linear algebra we define the following system of equations,{

xn = xn−1 + yn−1

yn = xn−1
(6)

We can rewrite this in matrix form,(
xn
yn

)
=

(
1 1
1 0

)(
xn−1
yn−1

)
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Therefore, (
xn
yn

)
=

(
1 1
1 0

)n(
x0
y0

)
Compute the eigenvalues and eigenvectors of

A =

(
1 1
1 0

)
.

Solution. The characteristic equation of A is

0 =

∣∣∣∣λ− 1 −1
−1 λ

∣∣∣∣ = λ(λ− 1)− 1 = λ2 − λ− 1 = (λ− φ)(λ− φ),

where φ = 1+
√
5

2
and φ = 1−

√
5

2
. To find the eigenvector associated with λ1 = φ,

we compute(
φ− 1 −1
−1 φ

)
=

(
−1−

√
5

2
−1

−1 1+
√
5

2

)
−φR2+R1−→

(
0 0
−1 φ

)
;

hence, the eigenspace associated with λ1 = φ is spanned by v1 =

(
φ
1

)
. Similarly,

we find that the eigenspace associated with λ2 = φ is spanned by v2 =

(
φ
1

)
.

(b) Verify that if A = PBP−1 and k is a positive integer, then Ak = PBkP−1.

Solution. We prove this by induction on k. Suppose A = PBP−1. If k = 1, then
Ak = A = PBP−1 = PB1P−1, as desired. Now, assume the statement holds for
k = n− 1. Then

An = An−1A = PBn−1P−1PBP−1 = PBn−1BP−1 = PBnP−1,

as desired. Hence, for any positive integer k, Ak = PBkP−1.

(c) Using a hand calculator or MATLAB, compute f8, f12, and f20, where fn is
the nth Fibonacci number, starting with f0 = f1 = 1.

Solution. To compute these values, we may use Binet’s formula,

fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 ,
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which is obtainable by using the eigenvalues and eigenvectors from part (a) to

compute

(
1 1
1 0

)k (
1
1

)
= PDkP−1

(
1
1

)
. Thus, we find

f8 = 34, f12 = 233, f20 = 10, 946.

17. Determine which of the given quadratic forms in three variables are equivalent:

g1(x) = x21 + x22 + x33 + 2x1x2

g2(x) = 2x22 + 2x23 + 2x2x3

g3(x) = 3x22 − 3x23 + 8x2x3

g4(x) = 3x22 + 3x23 − 4x2x3.

Solution. We can determine which quadratic forms are equivalent by converting them
to matrices and comparing signatures and ranks. Two quadratic forms are equivalent
if and only if they have equal ranks and signatures.

g1(x) = x21 + x22 + x23 + 2x1x2

The matrix form of g1 is M1 =

1 1 0
1 1 0
0 0 1

. The characteristic polynomial is

det(λI −M1) = (λ− 1)[(λ− 1)2] + 1[−1(λ− 1)] + 0

= λ3 − 3λ2 + 2λ = λ(λ− 2)(λ− 1).

Thus, M1 has eigenvalues 0, 1, and 2 and signature 2−0 = 2. It is clear that rank(M1) =
2.

g2(x) = 2x22 + 2x23 + 2x2x3

The matrix form of g2 is M2 =

0 0 0
0 2 1
0 1 2

. The characteristic polynomial is

det(λI −M2) = λ[(λ− 2)2 − 1] = λ(λ− 3)(λ− 1).

Thus, M2 has eigenvalues 0, 1, and 3 and signature 2−0 = 2. Since the two nonzero rows
are not multiples of each other, they are linearly independent. Thus, rank(M2) = 2.
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g3(x) = 3x22 − 3x23 + 8x2x3

The matrix of g3 is M3 =

0 0 0
0 3 4
0 4 3

 . Since the two nonzero rows are not multiples

of each other, they are linearly independent and rank(M3) = 2. The characteristic
polynomial is

det(λI −M3) = λ[(λ− 3)2 − 16] = λ(λ− 7)(λ+ 1).

Thus, M3 has eigenvalues −1, 0, and 7 and signature 1− 1 = 0.

g4(x) = 3x22 + 3x23 − 4x2x3

The matrix of g4 is M4 =

0 0 0
0 3 −2
0 −2 3

. Since the two nonzero rows are not multiples

of each other, they are linearly independent and rank(M3) = 2. The characteristic
polynomial is

det(λI −M4) = λ[(λ− 3)2 − 4] = λ(λ− 1)(λ− 5).

Thus, M4 has eigenvalues 0, 1, and 5 and signature 2− 0 = 2.

Since g1, g2, and g4 all have rank 2 and signature 2, they are equivalent.

18. Which of the following matrices are positive-definite?

A =

2 1 1
1 2 1
1 1 2

 , B =

(
3 2
2 5

)
, C =

1 4 5
0 2 6
0 0 3

 , E =

(
1 3
3 5

)
.

Solution. Recall from Theorem 6.12 that a symmetric matrix M is positive definite if
and only if all the eigenvalues of M are positive. We can therefore determine whether
A,B, and E are positive definite by examining their eigenvectors.

The eigenvalues of A are 1, 1, and 4, so A is positive definite. The eigenvalues of B are
4 ±
√

5, so B is also positive definite. The eigenvalues of E are 3 ±
√

13, so E is not
positive definite.

To determine whether C is positive-definite, we let v =

xy
z

 be a nonzero vector and

compute

vTCv =
(
x y z

)1 4 5
0 2 6
0 0 3

xy
z


= x2 + 4xy + 2y2 + 5xz + 6yz + 3z2.
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From this, we determine that for v =

 0
1
−1

, vTCv = −1 < 0. Thus, C is not positive

definite.

19. Let g(x) = 3x21 − 3x22 − 3x23 + 4x2x3 be a quadratic form in three variables.

(a) Find a quadratic form in the type given in the Principal Axis Theorem that
is equivalent to g. What is the rank of g? What is the signature of g?

Solution. We first write the matrix form of g, M =

3 0 0
0 −3 2
0 2 −3

. We can then

compute the characteristic polynomial

det(λI −M) = (λ− 3)[(λ+ 3)2 − 4] = (λ− 3)(λ+ 1)(λ+ 5)

to find that the eigenvalues of M are λ1 = −5, λ2 = −1, and λ3 = 3. Thus,
the desired equivalent quadratic form is h(y) = 3y21 − y22 − 5y23. It is clear that
rank(g) = rank(M) = 3, and we can compute the signature of g to be 1−2 = −1.

(b) Identify the surface g(x) = 9.

Solution. If we set g(x) = 9, we obtain a hyperboloid of two sheets. This is evident
from the fact that g has two negative eigenvalues and one positive eigenvalue.


