Joseph Gardi Differential Geometry

Notes
Monday, October 14th 2019
ρ is differentable at p, if $y^{-1} \circ \rho \circ x$ is differentible and well defined. So this means compositions of differentible functions are differentible.

The differential map is a linear map. It maps $\operatorname{span}([1,0,0],[0,1,0])$ to the tangent plane. We can use it to change into the local cordinates system.

Consider a vector space V of finite dimension. then having an inner product on V is equivalent to having a norm on $\left.V .\|v+w\|^{2}=\langle v+w, v+w\rangle=\langle v, v\rangle+2<v, w\right\rangle$ $+\langle w, w\rangle \Longrightarrow\langle v, w\rangle=\|v+w\|^{2}-\|v\|^{2}-\|w\|^{2}$. We've already shown in a previous lecture that we can get a norm from an inner product. Now we've shown that we can get an inner product from a norm. So they're equivalent.

Now we put a measurement on a manifold. We call a manifold with a measurement on it a riemannian manifold. For a reegular surface, the measurement is just the norm squared.

First fundamental form

Anything that eats a vector and spits out a number is a form. We can use the first fundamental form to find lengths and angles on the manifold.

The first fundamental form of $\mathbb{R}^{3} \supset S$ induces on each tangent plane $T_{p}(S)$ of a regualr surface S an inner product, to be denoted by $<_{,}>_{p}$. If $w_{1}, w_{2} \in T_{p}(S) \subset \mathbb{R}^{3}$, then $<w_{1}, w_{2}>$ is equal to the innner product of w_{1}, w_{2} as vectors in \mathbb{R}^{3} Since this inner product is a symmetric bilinear form therre is a corresponding quadratic form $I_{p}: T_{p}(S) \rightarrow \mathbb{R}$ given by,

$$
I_{p}(w)=<w, w>_{p}=\|w\|^{2} \geq 0
$$

The quadratic fom I_{p} on $T_{p}(S)$ defined above is called the firsst fundamental form of the regular surface S at $p \in S$.

Second fundamental form
Let S^{\prime} be the set of curves tangent to some $v \in S . k_{1}$ is defined as the largeset curvature of any curve in S^{\prime}. k_{2} is defined as the smallest curvature of any curve in S^{\prime}. Gaussian cuvature is defind as $k_{1} k_{2}$. Meean curvature iss $\frac{k_{1}+k_{2}}{2}$

The second fundamental form is equivalent to gaussian curvature in \mathbb{R}^{3}.

How to find first fundmanet form in local coordinates
Given $w \in T_{p}(S)$, find a curve $\alpha(t)$ on S such that $\alpha(t)=x(u(t), v(t))$ with $\alpha^{\prime}(t)=$
$x_{u} u^{\prime}(t)+x_{v} v^{\prime}(t), \alpha^{\prime}(0)=x_{u} u^{\prime}(0)+x_{v} v^{\prime}(0)=\left[x_{u}, x_{v}\right]\left[\begin{array}{l}u^{\prime}(0) \\ v^{\prime}(0)\end{array}\right]$
Then,

$$
\begin{aligned}
& I_{p}(w)=\|w\|^{2} \\
& =<u^{\prime}(0) x_{u}+v^{\prime}(0) x_{v}, u^{\prime}(0) x_{u}+v^{\prime}(0) x_{v}> \\
& =u^{\prime}(0)^{2}<x_{u}, x_{u}>+2 u^{\prime}(0) v^{\prime}(0)<x_{u}, x_{v}>+v^{\prime}(0)^{2}<x_{v}, x_{v}> \\
& =\left[u^{\prime}(0), v^{\prime}(0)\right]\left[\begin{array}{ll}
\left.<x_{u}, x_{u}\right\rangle & \left.<x_{u}, x_{v}\right\rangle \\
\left.<x_{u}, x_{v}\right\rangle & \left.<x_{v}, x_{v}\right\rangle
\end{array}\right]\left[u^{\prime}(0), v^{\prime}(0)\right]
\end{aligned}
$$

$E=<x_{u}, x_{u}>, F=<x_{u}, x_{v}>, G=<x_{v}, x_{v}>$ are called the first fundamental cooeficients.
We can generlize this to a manifold. Let n be the dimension of the manifold. Let p be a point on the manifold. Let $\left\{u_{1}, \cdots, u_{n-1}\right\}$ be a basis for the tangent space at p. Then the riemmani metric on the manifold is,

$$
\|w\|_{\text {riemmani }}^{2}=w^{T}\left[\begin{array}{ccc}
<x_{u_{1}}, x_{u_{1}}> & \cdots & <x_{u_{1}}, x_{u_{n-1}}> \\
& \ddots & \\
<x_{u_{n-1}}, x_{u_{1}}> & \cdots & <x_{u_{n-1}}, x_{u_{n-1}}>
\end{array}\right]
$$

Angle at which two curves intersect can be calculated with,

$$
\cos \theta=\frac{<\alpha^{\prime}\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)>}{\left\|\alpha^{\prime}\left(t_{0}\right)\right\|\left\|\beta^{\prime}\left(t_{0}\right)\right\|}
$$

The area of a bounded region $R \in S$ on a regular surface S with parameterization x is,

$$
\iint_{x^{-1}(R)}\left\|x_{u} \times x_{v}\right\| d u d v=\iint_{x^{-1}(R)} \sqrt{E G-F} d u d v
$$

$x_{u}=(-r \sin u \cos v,-r \sin u \sin v, r \cos u)$
$x_{v}=(-(a+r \cos u) \sin v,(a+r \cos u) \cos v, 0)$

$$
\begin{aligned}
E & =r^{2}\left(\sin ^{2} u \cos ^{2} v+\sin ^{2} u \sin ^{2} v+\cos ^{2} u\right)=r^{2} \\
G & =(a+r \cos u)^{2} \sin ^{2} v+(a+r \cos u)^{2} \cos ^{2} v=(a+r \cos u)^{2} \\
F & =r(a+r \cos u) \sin u \cos v \sin v-r(a+r \cos u) \sin u \sin v \cos v=0
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\int_{u=0}^{2 \pi} \int_{v=0}^{2 \pi} \sqrt{E G-F} d u d v \\
& =\iint \sqrt{r^{2}(a+r)^{2}-0} d u d v \\
& =\iint r(a+r) d u d v \\
& =\iint r a d u d v+\iint r^{2} \cos u d u d v \quad=2 \pi(r a+(\sin 2 \pi-\sin 0)) \\
& =2 \pi(r a+(0-0)) \\
& =2 \pi r a
\end{aligned}
$$

Why unit quaternion multiplicaiton represents a rotation in \mathbb{R}^{3}

Let H be \mathbb{R}^{4}. Let $q \in S^{3}=\{q \in H:\|q\|=1\}$. For each q dfeine a map $H \rightarrow H, x \mapsto$ $q \times \bar{q}$. Note that $\|q\|=1$ implies $\|q\|^{2}=1 \Longrightarrow q \bar{q}=1 \Longrightarrow q^{-1}=\bar{q}$
So $R_{q}(x)=q x \bar{q}$. We claim R_{q} is a rotation in \mathbb{R}^{3}.
To show R_{q} is a rotation we show R_{q} is linear and preserves the the norm. First we show R_{q} is a linear map. $R_{q}(c x+y)=q(c x+y) \bar{q}=c q x \bar{q}+q y \bar{q}=c R_{q}(x)+R_{q}(y)$.
Now we show that $\left\|R_{q}(x)\right\|=\|x\|$,

$$
\begin{aligned}
\left\|R_{q}(x)\right\| & =\|q x \bar{q}\| \\
& =\|q\|\|x\|\|\bar{q}\| \\
& =\|x\|
\end{aligned}
$$

On the homework we will find matrix representation of R_{q}. It is $\left[R_{q}(\vec{i}), R_{q}(\vec{j}), R_{q}(\vec{k})\right]$

