Joseph Gardi Differential Geometry Notes Monday, Nov 11th 2019

Statical manifold

Gaussians form a manifold. You can use differential geometry to crerate a distance function between gaussians. Euclidean distance doesn't work for this.

3 approaches to big data problems

- 1) Supervised learning: Assume a parametric model and then find parameters that minimize some loss function that measures the error rate on some labeled data set.
- 2) Probabalistic aprooach: Maximize likelihood of the data
- 3) Geometric method: Geometric methods let us use visual intuition. For the linear regression problem want to make $y \approx X\theta$ where y is the correct outputs vector, X is an input matrix and θ is the vector with the parameters. $X\theta$ is some linear combination of the columns of X. Suppose that X is n by m. The possible outputs for $X\theta$ is B = span(columns of X). That is an m dimensional subspace of R^n with the columns of X as it's basis. But y lives in R^n . So we have to find the point in B closest to y. You can do that by projecting y onto B. Look at the rate of change of The frame $\{x_u, x_v, N\}$ to detect how the manifold is curved. Christoffel symbols

$$\overline{x_{uu} = \Gamma_1^{11} x_u + \Gamma_2^{11} x_v} + L_1 N$$

$$x_{uv} = \Gamma_1^{12} x_u + \Gamma_2^{12} x_v + L_2 N$$

$$x_{vu} = \Gamma_1^{21} x_u + \Gamma_2^{21} x_v + L_2 N$$

$$x_{vv} = \Gamma_1^{22} x_u + \Gamma_2^{22} x_v + L_2 N$$

$$N_u = a_{11} x_u + a_{21} x_v$$

$$N_v = a_{12} x_u + a_{22} x_v$$
Then $e = L_1$, $f = L_2$, $g = L_3$.
How to find christoffel symbols

Take inner product of both sides with x_u and x_v for the first 4 equations for the christoffel symbols. This gives you a system of equations.

$$< x_{uu}, x_u > = \Gamma_1^{11} < x_u, x_u > + \Gamma_2^{11} < x_v, x_u >$$
 $< x_{uu}, x_v > = \Gamma_1^{11} < x_u, x_v > + \Gamma_2^{11} < x_v, x_v >$
 \vdots

Solve that system of equations to find the christoffeel symbols.

Theorem

The gaussian curvature of asurface is invariant by local isometries.