Joseph Gardi
Differential Geometry
Notes
Monday, Nov 4th 2019
Definition A diffeomorphism $\phi: S \rightarrow \bar{S}$ is an isometry if for all $p \in S$ and all pairs $w_{1}, w_{2} \in T_{p}(S)$ we have,

$$
<w_{1}, w_{2}>_{p}=<d \phi_{p}\left(w_{1}\right), d \phi_{p}\left(w_{2}\right)>_{\phi(p)}
$$

$S$ and $\bar{S}$ are isometric.
The surface of a cylindar and the plane have the same first fundamental form. So they are isometric.

Let $\bar{u}=u, \bar{v}=\bar{a} \sinh v$.
Let $x(\bar{u}, \bar{v})=(\bar{v} \cos \bar{u}, \bar{v} \sin \bar{u}, a \bar{v})=(\bar{a} \sinh v \cos u, \bar{a} \sinh v \sin u, a u)$.
Then $x_{u}=(-\bar{a} \sinh v \sin u, \bar{a} \sinh v \cos u, \bar{a})$,
$x_{v}=(\bar{a} \cosh v \cos u, \bar{a} \cosh v \sin u, 0)$.
Then $E=\bar{a}^{2} \sinh ^{2} v+\bar{a}^{2}=\bar{a}^{2} \cosh ^{2} v, F=0, G=\bar{a}^{2} \cosh ^{2} v$.
Gauss Map Gauss Map is a map $S \rightarrow S^{2}$ (a unit sphere), $p \mapsto N(p)$ where $N(p)$ is the unit normal vector to the surface at point $p$.
Self adjoint: A linear map $L: V^{n} \rightarrow V^{n}$ is self adjoint if $<L(v), w>=<v, L(w)>$. A matrix is self adjoint if and only if it is symetric.
(a) $l l_{p}(v) \triangleq$ Normal curvature along $v$
(b) $k_{1}, k_{2} \triangleq$ Principal curvaure
(c) $\operatorname{det} d N_{p} \triangleq$ gaussian curvature
(d) $-\frac{1}{2} \operatorname{tr}\left(d N_{p}\right) \triangleq$ mean curvature

Theorem: The differential $d N_{p}$ is a map from the tangent plane on the sphere to the tangent plane on the surface. The planes are parallel. So $d N_{p}\left(x_{u}\right)=N_{u}, d N_{p}\left(x_{v}\right)=N_{v}$. The normal vector is orthogonal to $x_{u}, x_{v}$. Therefore,

$$
\begin{aligned}
&<N, x_{u}>=0 \\
&<N, x_{v}>=0 \\
& \Longrightarrow<N_{v}, x_{u}>+<N, x_{u v}>=0 \\
&<N_{u}, x_{v}>+<N, x_{v u}>=0 \\
& \Longrightarrow<N_{u}, x_{v}>=<N_{v}, x_{u}> \\
& \Longrightarrow<d N_{p}\left(x_{u}\right), x_{v}>=<x_{u}, d N_{p}\left(x_{v}\right)>
\end{aligned}
$$

Since $d N_{p}$ and the inner product are linear we only have to show it holds true for basis vectors $x_{u}, x_{v}$.

The second fundamental form: The fact that $d N_{p}: T_{p}(S) \rightarrow T_{p}(S)$ is a self adjoint means we can associate to $d N_{p}$ a quadratic form $Q$ in $T_{p}(S)$ given by $Q(v)=<d N_{p} v, v>, v \in$ $T_{p}(S)$. To obtain a geometic interpretation of the equadratic form, we need a few definitions. For rerasons that will soon become clear, we shall use the quadratic fomr $Q$.
Definition of second fundamental form: It is the quadratic form $l l_{p}$ defined in $T_{p}(S)$ by $l l_{p}(v)=-\left\langle d N_{p} v, v\right\rangle$.
Let $C$ be a regular cuve in $S$ passing through $p \in S$,. Let $k$ be the curvature of $C$ at $p$ and let $\cos \theta=<N, n>. k_{n}=k \cos \theta$ is the normal curvature of $C$ at $p$.
Pf of Euler's formula: Normal cuvature along a given direction in $T_{p}(S)$ can be calculated from the principal curvaturees, $k_{n}=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta$.
$k_{n}=-<d N_{p}(v), v>=-<d N_{p}\left(\cos \theta e_{1}+\sin \theta e_{2}\right), v>=-<\cos \theta d N_{p}\left(e_{1}\right)+\sin \theta d N_{p}\left(e_{2}\right), v>=<$ $k_{1} \cos \theta e_{1}+k_{2} \sin \theta e_{2}, \cos \theta e_{1}+\sin \theta e_{2}>=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta$.
Gaussian curvature: $k_{1} k_{2}$
Mean curvature: $\frac{k_{1}+k_{2}}{2}$
A point is elliptic if $\operatorname{det} d N_{p}>0$, hyperbolic if $\operatorname{det} d N_{p}<0$, parabolic if $\operatorname{det} d N_{p}=0$ with $d N_{p} \neq 0$, and planar if $d N_{p}=0$.

