Joseph Gardi Differential Geometry Notes Monday, Nov 4th 2019

Definition A diffeomorphism $\phi : S \to \overline{S}$ is an isometry if for all $p \in S$ and all pairs $w_1, w_2 \in T_p(S)$ we have,

 $< w_1, w_2 >_p = < d\phi_p(w_1), d\phi_p(w_2) >_{\phi(p)}$

S and \overline{S} are isometric.

The surface of a cylindar and the plane have the same first fundamental form. So they are isometric.

Let $\bar{u} = u, \bar{v} = \bar{a} \sinh v$. Let $x(\bar{u}, \bar{v}) = (\bar{v} \cos \bar{u}, \bar{v} \sin \bar{u}, a\bar{v}) = (\bar{a} \sinh v \cos u, \bar{a} \sinh v \sin u, au)$. Then $x_u = (-\bar{a} \sinh v \sin u, \bar{a} \sinh v \cos u, \bar{a})$, $x_v = (\bar{a} \cosh v \cos u, \bar{a} \cosh v \sin u, 0)$. Then $E = \bar{a}^2 \sinh^2 v + \bar{a}^2 = \bar{a}^2 \cosh^2 v$, $F = 0, G = \bar{a}^2 \cosh^2 v$. <u>Gauss Map</u> Gauss Map is a map $S \to S^2$ (a unit sphere), $p \mapsto N(p)$ where N(p) is the unit normal vector to the surface at point p. <u>Self adjoint</u>: A linear map $L : V^n \to V^n$ is self adjoint if < L(v), w > = < v, L(w) >. A matrix is self adjoint if and only if it is symetric.

- (a) $ll_v(v) \triangleq$ Normal curvature along v
- (b) $k_1, k_2 \triangleq$ Principal curvaure
- (c) det $dN_p \triangleq$ gaussian curvature
- (d) $-\frac{1}{2}tr(dN_p) \triangleq$ mean curvature

<u>Theorem</u>: The differential dN_p is a map from the tangent plane on the sphere to the tangent plane on the surface. The planes are parallel. So $dN_p(x_u) = N_u$, $dN_p(x_v) = N_v$. The normal vector is orthogonal to x_u , x_v . Therefore,

$$< N, x_u > = 0 < N, x_v > = 0 \Longrightarrow < N_v, x_u > + < N, x_{uv} > = 0 < N_u, x_v > + < N, x_{vu} > = 0 \Longrightarrow < N_u, x_v > = < N_v, x_u > \Longrightarrow < dN_p(x_u), x_v > = < x_u, dN_p(x_v) >$$

Since dN_p and the inner product are linear we only have to show it holds true for basis vectors x_u, x_v .

<u>The second fundamental form:</u> The fact that $dN_p : T_p(S) \to T_p(S)$ is a self adjoint means we can associate to dN_p a quadratic form Q in $T_p(S)$ given by $Q(v) = \langle dN_pv, v \rangle, v \in$ $T_p(S)$. To obtain a geometic interpretation of the equadratic form, we need a few definitions. For rerasons that will soon become clear, we shall use the quadratic fomr Q. <u>Definition of second fundamental form:</u> It is the quadratic form ll_p defined in $T_p(S)$ by $ll_p(v) = -\langle dN_pv, v \rangle$. Let C be a regular cuve in S passing through $p \in S_r$. Let k be the curvature of C at p and let $\cos \theta = \langle N, n \rangle$. $k_n = k \cos \theta$ is the normal curvature of C at p. <u>Pf of Euler's formula:</u> Normal cuvature along a given direction in $T_p(S)$ can be calculated

from the principal curvaturees, $k_n = k_1 \cos^2 \theta + k_2 \sin^2 \theta$. $k_n = -\langle dN_p(v), v \rangle = -\langle dN_p(\cos \theta e_1 + \sin \theta e_2), v \rangle = -\langle \cos \theta dN_p(e_1) + \sin \theta dN_p(e_2), v \rangle = \langle v \rangle$

 $k_{1} \cos \theta e_{1} + k_{2} \sin \theta e_{2}, \cos \theta e_{1} + \sin \theta e_{2} >= k_{1} \cos^{2} \theta + k_{2} \sin^{2} \theta.$ <u>Gaussian curvature:</u> $k_{1}k_{2}$

<u>Mean curvature: $\frac{k_1+k_2}{2}$ </u>

A point is elliptic if det $dN_p > 0$, hyperbolic if det $dN_p < 0$, parabolic if det $dN_p = 0$ with $dN_p \neq 0$, and planar if $dN_p = 0$.