Joseph Gardi Differential Geometry Notes Monday, Dec 12th 2019

Today

- (a) Covariant derivative
- (b) Parallel transport
- (c) Geodesic
- (d) G-B Theorem

Intrinsic geometry means we are looking at just surfaces. It lies in this coordinate. *w* is a vector field on a surface. $w(u, v) = a(u, v)x_u + b(u, v)x_v$ Let's restrict *w* onto the curve $\alpha(t) = (u(t), v(t))$. Then $w(t) = a(\alpha(t))x_u + b(\alpha(t))x_v$ and

$$w'(t) = a'(\alpha(t))\alpha'(t)x_{u} + a(\alpha(t))(x_{uu}u'(t) + x_{vv}v'(t)) + b'(\alpha(t))\alpha'(t)x_{v} + b(\alpha(t))(x_{vu}u'(t) + x_{vv}v'(t)) = qx_{u} + rx_{v} + sN$$
 (for some q, r, s \in R)

If Dw/dt = 0 then that means the vector field is paralell to $\alpha'(t)$.

A vector field *w* along a parameterized curve $\alpha : I \to S$ is said to be parallel if Dw/dt = 0 for every $t \in I$.

Parallel transport in R^2 means all the vectors are parallel.

Proposition If w, v are parallel vector fields then $\langle w(t), v(t) \rangle$ is constant.

<u>Definition</u> a nonconstant parameterized curve $\gamma : I \to S$ is said to be geodesic at $t \in I$ if the field of its tangent vectors $\gamma'(t)$ is parallel along γ at t. That is,

$$\frac{D\gamma'(t)}{dt} = 0$$

 γ is a parameterized geodesic if it is geodesic for all $t \in I$. <u>Gauss-Bonnet</u>

$$\int \int_S k \, ds = 2\pi \chi(S)$$

 χ is the euler number for the surface. $\chi(S) = vertices - edges + faces$