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1 Regular Curves

Overview of key concepts will be covered in today’s lecture. Definition A parametrized differentiable curve
is a differentiable map α : I → Rn of an open interval I = (a, b) of the real line R into Rn.
Limitations of multivaraible functions for complex shapes: As we learned in 8th grade a function can return
only one value for each input. This means that certain shapes are not possible. We see this visually with
the vertical line test test.

But a circle can be modeled easily with a parametric curve. Use I = (0, 2π), α(t) = (cos(t), sin(t))
Definition Regular curves are curves where at least the second derivative exists and α′(t) 6= 0. These are
curves to which you can fit data. we require α′(t) 6= 0 to guarantee the existence of tangent vectors. Later
we also require α′′(t) 6= 0 to guarantee the existence of normal vectors.

• x2 + y2 = 1

• α(t) = (cos(t), sin(t))

•

{
x = sin(t)

y = cos(t), 0 < t <= 2π

• β(t) = eit

Note: The second is a parametrized curve. Also the second and third have different orientations. The first
one, does not tell us any orientations.

Let’s see another example. A helix in R3. The parametrized helix can be written as a 3D curve

γ(t) = (cos(t), sin(t), t)

When the curve is parameterized by arc length (i.e., speed at each point is 1), then we can use the Frenet
Frame to describe the curve locally. You can think of this as a three-arrowed axis which travels along the
curve and describes the rate change of these frames along the curve.
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Recall: a function being differentiable can be tested by looking at whether

∂fi
∂xj

exists and is continuous for all i and j (This is called C1 differentiable). This is a sufficient condition for f
being C1 differentiable. However, when we speak of parameterized curves being “differentiable”, we really
mean smooth or infinitely differentiable, i.e. f ∈ C∞

Recall: a function f : Rn → Rm is differentiable only if each of its m component functions is differentiable.

Example Helix: x2 + y2 = a2 in R3, such that z can be anything. Observe that this function, in R2, is a
circle.

We may parameterize the circle as {
x(t) = a cos(t)

y(t) = a sin(t)
0 < t <= 2π

which implies the parametrized curve being

α(t) = (a cos(t), a sin(t))

The following is a different parametrized curve even they have the same trace.{
x = sin(t)

y = cos(t)
0 < t <= 2π

which implies the parametrized curve is

β(t) = (a sin(t), a cos(t))

for the parameter 0 < t <= 2π.

Consider another parametrized curve, which have same trace{
x = cos(2πt)

y = sin(2πt)
0 < t <= 1

Which may be written as

γ(t) = (a cos(2πt), a sin(2πt))

These parameterizations trace out the same curve and we say that they have the same trace. Q: why do we
need to use parametrized curve?
A: Let’s understand the reason by above examples. A parametrized curve describes a curve as a particle, it
records the moving particle orientations, even back and forth motion in the middle of a circle or a motion
cover the circle many times. But x2 + y2 = 1 is after the ”battle”, just leaving us a trace. Therefore
parametrized curves can capture dynamics and kinematics in physics and computer vision (e.g. see a person
moving forward then backward on pedestrian walkways.)
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Consider the magnitude of the derivative of the first parameterization. We find that

||α′(t)|| =
√

(−a sin(t))2 + (a cos(t))2

=

√
a2(sin2 t+ cos2(t))

=
√
a2

= a.

For the other parameterization, γ, we find that

γ′(t) = (−2πa sin(2πt), 2πa cos(2πt)

||γ′(t)|| =
√

(−2πa)2(sin2 t+ cos2(t))

= 2πa.

Example 3.

α : R→ R2

t→ (t3, t2) = α(t)

α′(t) = (3t2, 2t) = ~0{
3t2 = 0

2t = 0
t = 0

α at t=0 is not regular.

Example 4.

α : R→ R2

t→ (t3 − 4t, t2 − 4) = α(t)

α′(t) = (3t2 − 4, 2t) = ~0⇐⇒

{
3t2 − 4 = 0

2t = 0
t = 0,−4 6= 0.

Every point is regular.

Example 5. See the slides. Example 6. Find the intersection curve in a parametric form of sphere x2 + y2 +
z2 = 22 and cylinder (x− 1)2 + y2 = 1. This will be our homework!

Solution: Hint: Let 
x− 1 = cos(t)

y = sin(t)

z = s

Then, plug this set of equations into the equation of the sphere. You get

(1 + cos(t))2 + sin(t)2 + s2 = 4.

Then you can solve for s in terms of t. This is called a Viviani curve. If you want to find the lenth of this
curve, them the length formula is non-integrable. Our homework will be to find a parametrization of this
curve, and approximate the length of this curve use numerical method.
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2 Arc Length of a Curve

Definition. Arc length. Refer to handout. Example: consider the circle

α(t) = (cos(t), sin(t)),

where 0 ≤ t ≤ 2π. Equivalently, consider

β(t) = (cos(2πt), sin(2πt)),

where t ∈ [0, 1]

Definition. α is parameterized by arc length if an only if it has unit speed.

In the above example, α is parameterized by arc length but β is not. That is since

α′(t) = (− sin(t), cos(t))

||α′(t)|| = 1

while

β′(t) = (−2π sin(t), 2π cos(t))

||β′(t)|| = 2π (which is not 1).

Why do we need a curve parameterized by arc length? Here is why.

α(s) (parameterized by arc length)

||α′(s)|| = 1

||α′(s)||2 = 1

α′(s) · α′(s) = 1

When you take the derivative of both sides, you get

α′′(s) · α′(s) + α′(s) · α′′(s) = 0

2(α′′(s) · α′(s)) = 0

α′′(s) ⊥ α′(s)

Which shows that the second derivative of α is guaranteed to be orthogonal to its velocity if it is parameterized
by arc length. This has applications to the Frenet Frame.

Definition. Frenet Frame. With ||α′(s)|| = 1, let ~t = α′(s) be the tangent vector. Then, let

~n =
α′′(s)

||α′′(s)||
.

Define ~b = ~t× ~n. Now {~t, ~n,~b} forms the Frenet Frame, which is an orthonormal frame.

Now taking the derivative of ~b = ~t× ~n, you get torsion, Here is some work showing that.

~b(s) = ~t(s)× ~n(s).
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Claim:

~b′(s) = τ(s)~n(s).

Proof: Key idea: we prove ~b′(s) ⊥ ~t(s) and ~b′(s) ⊥ ~b(s); which will force ~b′(s)~n(s)

We start with

~b(s) = ~t(s)× ~n(s).

We take the derivative of both sides to get

~b′(s) = vect′(s) × ~n(s) + ~t(s)× ~n′(s)

The left term of the RHS is zero since ~t′(s) is ~n(s) , which implies that ~b′′(s) ⊥ ~t(s).

To prove the second claim, we again start with

~b(s) = ~t(s)× ~n(s)

||~b(s)|| = ||~t(s)× ~n(s)||
= ||~t(s)|| ||~n(s)|| sin θ
= 1

Having shown that, we note the implication that

||~b(s)||2 = 1

~b(s) ·~b(s) = 1 (Now take the derivative.)

~b′(s) ·~b(s) +~b(s) ·~b′(s) = 0

2~b′(s) ·~b(s) = 0

~b′(s) ⊥ ~b(s)

Note that α′′(s) = (α′(s))′. That is you can interpret the second derivative of a curve α as the rate of change
of its tangent vectors.
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Definition The speed is τ(s)
Definition Curvature. Let α : I →3 be a curve parametrized by arc length s ∈ I. The number ‖α′′(s)‖ =
k(s) is called the curvature of α at s.
Geometric Meaning Let α : I = (a, b)→3 be a curve parametrized by arc length s. Since the tangent vector
α′(s) has unit length, the norm ‖α′′(s)‖ of the second derivative measures the rate of change of the angle
which neighboring tangents make with the tangent at s. ‖α′′(s)‖ gives, therefore, a measure of how rapidly
the curve pulls away from the tangent line at s, in a neighborhood of s.

Another geometric meaning: Curvature is related to the radius of the circle most closely fitting a curve at a
point, such that K = 1
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Torsion Since b(s) is a unit vector, the length ‖b′(s)‖ measures the rate of change of the neighboring oscu-
lating planes with the osculating plane at s; that is b′(s) measures how rapidly the curve pulls away from
the osculating plane at s, in a neighborhood of s.
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Let α : I →3 be a curve parametrized by arc length s such that α′′(s) 6= 0, s ∈ I. The number τ(s) defined

by ~b′(s) = τ(s)~n(s) is called the torsion of α at s.

3 Frenet Formula


~t′(s) = 0~t(s) + k(s)~n(s) + 0~b(s)

~n′(s) = −k(s)~t(s) + 0~n(s) + τ(s)
~b′(s) = 0~t(s) + τ(s)~n(s) + 0~b(s)

Let’s figure out what is ~n′(s).

~n(s) = b(s)× t(s)
~n′(s) = b′(s)× t(s) + b(s)× t′(s)

= τ(s)~n(s)× ~t(s) +~b× k(s)~n(s)

= −τ(s)~b(s)− k(s)~t(s)

This exercise has shown us that we can fill in the matrix~t′(s)~n′(s)
~b′(s)

 =

 0 k(s) 0
−k(s) 0 −τ(s)

0 τ(s) 0

~t(s)~n(s)
~b(s)


called the Frenet Formula.

This is important because it theoretically gives us a key new method to study curved objects (such as
manifolds!) by using a linear algebra problem.

For instance, consider a surface
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X(u, v) = (x(u, v), y(u, v), z(u, v)),

this could be the sphere x2 + y2 + z2 = 1, with parameterization

X(u, v) = (cosu cos v, sinu cos v, sin v).

Using Frenet’s Formula, you can examine the behavior local to any point.

This can be applied to applications such as

• identifying anomalous behavior from UAVs

• determining the trajectory of a cell phone using the onboard sensor data, and using the trajectory to
analyze gait and identify users

• robotic surgery

4 Local Canonical Form for Curves

Local canoncical form is an approximation. You get it by taylor expanding around a single point. Consider
any curve α(s). Let’s expand around 0.

α(s) = α(0) + sα′(0) +
s2

2!
α′′(0) +

s3

3!
α′′′(0) + · · ·

α(0), α′(0) and the others are vectors obtained by expanding termwise

= (x(s), y(s), z(s) Now, Taylor expand each dimension.

= (x(0) + x′(0)t+
1

2!
x′′(0)t2 + . . . y(0) + y′(0)t+

1

2!
y′′(0)t2 + . . . z(0) + z′(0)t+

1

2!
z′′(0)t2 + . . .)

=

x(0)
y(0)
z(0)

+

x′(0)
y′(0)
z′(0)

 t+ . . .

Recall now that

α′′′(s) = (α′′(s))′

= (k(s)~ns)′

= k′(s)~n(s) + ~n′(s)k(s)

= k′(s)~n(s) + (−k~t− τ~b)k(s)

We can similarly investigate the other terms of the Taylor expansion. We use

α′(s) = ~t(s)

α′′(s) = k(s)~n(s)

α′′′(s) = k′(s)~n(s) + (−k~t− τ~b)k(s)

Let R be the remainder after expanding to 4 terms. which allows us to collect

α(s)− α(0) =

[
s− s3

3!
k2(s)

]
τ(s) +

[
ss

2!
k(s) +

s3

3!
k′(s)

]
~n(s) +

[
s3

3!
τ(s)k(s)

]
~b(s) + ~R
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which gives us a local representation of the curve, called Local Canonical Form.

x(s) = s− s3

3!
k2(s) +Rx

y(s) =
k

2
s2 +

s3

3!
k′(s) +Ry

z(s) = −kτ
3!
s3 +Rz
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