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Review

• α(s) is a regular cuve if α(s) is parameterized by arclength (||α′(s)|| = 1)

• α(s) ⊥ α′′(s)

• ~t(s) = α′(s)

• ~n(s) = α′′(s)
||α′′(s)|| =

α′′(s)
α(s)

where k(s) , ||α′′(s)|| = 1
R(s)

• Define~b(s) =~t(s)×~n(s)

Inverse Function Theorem: Monotonic functions are invertable.
Theorem If α is a regular curve in R3 then there exists a reparameterization β of α such
that β has unit speed.
Proof: Let α : I → R3 be a regular curve Let s(t) =

∫ t
t0
||α′(t)||dt. Then s′(t) = ||α′(t)||.

Since α is regular, α′(t) 6= 0. Then s′(t) = ||α′(t)|| 6= 0. Since the derivative never corsses
zero and s is continuous the function must be monotonic. Therefore, s has an inverse t(s).

dt
ds

=
1
ds
dt

=
1

s′(t)

=
1

||α′(t)||

Then dt
ds is always greater than 0. Let β be the reparameeterizatoin,

β(s) = α(t(s))

I calim β has unit speed,

β′(s) = α′(t(s))t′(s)
||β′(s)|| = ||α′(t(s))||||t′(s)||

=������||α′(t(s))|||| 1
�����α′(t(s))

||

= 1

So β is parameterized by arclength.
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Example of this theorem: Consider a helix,

α : R→ R3

t 7→ (cost, sint, t) = α(t)
α′(t) = (−sint, cost, 1)

||α′(t)|| =
√
(−sint)2 + (cost)2 + 1 =

√
2

s(t) =
∫ t

0
||α′(t)||dt−

∫ t

0

√
2dt =

√
2t

=⇒ t = s/
√

2

So β(s) = (cos s√
2
, sin s√

2
, s√

2
)

From now on we can say wihtout loss of generality, we can assume a regualr curve is
parameterized by arclength.
Example: A regualr parameterized curve α has the property that all its tangent lines go
through a fixed point. a) prove that the trace is a straight line segment.
Proof: Without loss of generality prove that parameterized by arclength.
Let p be the fixed point. A tangent line at α(s) is the line with direction α′(s) and passing
throguht the point α(s). The equation for the line is l(t) = α(s) + tα′(s).
By hypothesis, for each choice of s there exists t(s) such that

α(s) + α′(s)t(s) = p

Notice t(s) is differentiable,

α(s) + α′(s)t(s) = p
=⇒ α′(s) · α(s) + α′(s) · α′(s)t(s) = p · α′(s)

=⇒ t(s) =
·α′(s)− α′(s) · α(s)

||α′(s)||2

Since α iks regular, ||α′(s)|| 6= so this is a valid expression and t(s) is differentiable. So
then we take the derivative of both sides,

α(s) + α′(s)t(s) = p
=⇒ α′(s) + α′′(s)t(s) + α′(s)t′(s) = 0 (take derivative of both sides)

There are application to UAV autonomous vehicles and cellphones Definition {v1, v2, v3}
is right hand sided if and only if det([v1 v2 v3]) > 0
Recall the definition of a group A group G is a finite or infinite set of elements together
with a binary operation (called the group operation) that together satisfy the four funda-
mental properties of closure, associativity, the identity property, and the inverse property.
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The operation with respect to which a group is defined is often called the ”group opera-
tion,” and a set is said to be a group ”under” this operation. Elements A, B, C, ... with
binary operation between A and B denoted AB form a group if

1. Closure: If A and B are two elements in G, then the product AB is also in G.
2. Associativity: The defined multiplication is associative, i.e., for all A,B,C in G,

(AB)C = A(BC).
3. Identity: There is an identity element I (a.k.a. 1, E, or e) such that IA = AI = A for

every element A in G.
4. Inverse: There must be an inverse (a.k.a. reciprocal) of each element. Therefore, for

each element A of G, the set contains an element B = A−1 such that AA−1 = A−1A = I.
Claim: The set of all 3× 3 orthonormal matrices forms a group denoted O(3):

O(3) = {A ∈ M3×3(R) : AT A = I}

Then there is SO(3) = {A ∈ O(3) : detA = 1} < O(3). Define he matrix multiplicationi
operator as

O(3)×O(3)→ O(3)
A, B 7→ AB

A ∈ O(3) =⇒ (ATTA) = IanddetA = 1

B ∈ O(3) =⇒ BTB = IanddetB = 1

Now we show AB ∈ O(3),

(AB)T(AB) = BT AT AB = BTB = I ∈ O(3)

So it is. Now we show that A−1 ∈ O(3).

A−1(A−1)T = A−1A = I
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