Joseph Gardi
Differential Geometry
Notes
Monday, September 302019

Preliminary Definitions

- A neighborhood around a point p is $\{x:\|x-p\| \leq r\}$ for some radius r. This set is shaped like a ball and denotoed $B_{r}(p)$.
- If we say something is true locally around x we mean it is true for all points in some sufficiently small neighborhood around x.
- A homeomorphism is a continuous function with a coninuous inverse.
- Intuition for continuous funcions. If f is continuous then a close to b implies that $f(a)$ close $f(b)$. To illustrate consider my body. My wrist is close to my hand. So if we apply a continuous transformationsto the position of each of my body parts theen my wrist will still be close to my hand. All the movements I normally do are continuous transformations. But if I cut off my own hand then my hand won't be close to my wrist anymore. That is a discontinuous transformation. There is a discontinuous jump from my wrist after cutting to my hand after cutting.
- The differential matrix for a function $f(x, y)$:

$$
D f \triangleq\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right]
$$

It will also be helpful to remember the first order taylor expansion for a continuous differentiable function $f: R^{2} \rightarrow R^{2}$,

$$
f(x, y)=f(u, v)+D f(u, v)\left[\begin{array}{l}
x-u \\
x-v
\end{array}\right]
$$

Theorem: Inverse function theorem in high dimension
Let $\rho:(u, v) \rightarrow(x(u, v), y(u, v))$ be a differentiable function.
ρ is locally (i.e. for some sufficiently small neighborhood) invertable around (a, b) if and only if $D \rho((a, b))$ is an invertable matrix. Recall,

$$
D \rho=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]
$$

Also, ρ^{-1} is differentiable.

We will first define regular surface. Then we take characteristic properties of regular surfaces to define manifolds. Manifolds are like a generalization of regular surfaces. We will put the reimennian matric on each tangent space.

This is similar to how we generalized R^{3} to metric spaces in analysis.
Suppose we are interested in the miotion of a particle. Then we take, as the state oof the particle, the pair of 3 dimensional vectoros (x, v) where x is the position and v is the velocity. If we know the particle must stay on a sphere M then we it follows that v must always be tangent to M. Then our state space S is not all pairs of 3-vectors but he tangent bundle of M which is a manifold.

$$
S=\{(x, v): v \text { is tangent to } M\}
$$

Definition: $S \subset R^{3}$ is a regular surface if for each $p \in S$ there exists a neighborhood V in R^{3} and a map $x: U \rightarrow V \cap S$ of an open set $U \subset R^{2}$ onto $V \cap S \subset R^{3}$ such that,

- x is differentiable (so we can use calculus)
- x is a homeomoorphism (so we can use analysis)
- x is regular (so we can use linear algebra). Since x is regular there is a tangent plane at each point in S.

Suppose we have a regular surface $V \subseteq R^{3}$ with a mapping $x:(u, v) \rightarrow(x(u, v) y(u, v), z(u, v))$. Then the tangent plane at a point q is spanned by the columns of $D x_{q}=\left[\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}\end{array}\right]$.
Notation:

$$
\frac{\partial(x, y)}{\partial(u, v)} \triangleq\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial u}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]
$$

$\{(x, y, f(x, y)): x, y \in R\}$ is a surface.
The parameterization for this surface is $a(x, y)=(x, y, f(x, y))$
Now we willl prove his is a regular surface. $d a=\left[\begin{array}{cc}1^{0} & \\ 0 & 1 \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right]$. This is invertable so a
has a continuous inverse. So it is homeomorphic. Definition: For a differentible function $f: U \subset R^{3} R$.

