
Real insight of lienar transformation

Let V n be a vector space with basis {v1, v2, · · · , vn}
Let W n be another wector space with basis {w1,w2, · · · ,wn}
Definition A function L : V n →Wm is linear if and only if, for all
x ∈ V n,

L(x + y) = L(x) + L(y)

L(γx) = γL(x), ∀γ ∈ R

All linear transformations have a matrix reprresentation. The
matrix for L is (L(v1), L(v2), · · · , L(vn)) The matrix just tells where
the basis vectors will go and the other vectors follow in a linear
way. if you don’t see this visually please see the animation at
https://youtu.be/kYB8IZa5AuE?t=72



Diagonalization

When can we diagonalize A over R?
When do there exist n linearly independent eigenvectors of A in R?

1. Find all eigenvalues of A

2. If there is an eigenvalue of A that is not in R, stop! A is not
diagonalizable over R.

3. If all the eigenvalues of A (n many, counting multiplicity) are
in R, then for each eigenvalue λ, find rank(A− λI ). If there
exists a λ such that

multiplicity of λ 6= n − rank(A− λI ) = nullity(A− λI ),

stop! A is not diagonalizable over R.

4. Otherwise, A is diagonalizable over R.
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Diagonalization

Why?

Let

Vλ = {x ∈ Rn | Ax = λx}
= {x ∈ Rn | (A− λI )x = 0}
= null(A− λI ).

Thus,

dimVλ = dim null(A− λI )
= n − rank(A− λI )
= nullity(A− λI ).



Eigenvalues and Eigenvectors

Facts

I dimVλ ≥ 1

I dimVλ ≤ the multiplicity of λ (i.e. geometric multiplicity ≤
algebraic multiplicity)

I Eigenvectors belonging to different eigenvalues must be
linearly independent

Theorem
An n × n matrix A is similar to a diagonal matrix D if and only if
Rn has a basis of eigenvectors of A. Moreover, the elements on the
main diagonal of D are the eigenvalues of A.

Thus, to find n linearly independent eigenvectors, for each λ we
must have dimVλ = mult(λ).

Theorem
An n × n matrix A is diagonalizable if all the roots of its
characteristic polynomial are real and distinct.
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Eigenvalues and Eigenvectors

In the case that A is diagonalizable, to find P such that
P−1AP = D we need

1. For each λi , find a basis for Vλi
, i.e. solve

(A− λi I )x = 0

and find a basis for null(A− λi I ). Say you find a basis
xi1, . . . , xiki , where ki is the multiplicity of λi .

2. Let P = (x11, . . . , x1k1 , . . . , xi1, . . . , xiki , . . . , xr1, . . . , xrkr ).
Then

P−1AP =


λ1Ik1

. . .

λi Iki
. . .

λr Ikr

 .



Steps to visualize diagonalization

A matrix A ∈ Rn×n is diagonalizable if it can be written in the
form A = PDP−1 where P is a invertable n by n matrix, and D is
a diagonal matrix.

1. If you can’t already visualize the eigenvectors watch at least
the first 5 minutes and 15 seconds of
https://youtu.be/PFDu9oVAE-g.

2. P always has the eigenvectors of A as the columns. So it is a
change of basis into the eigenbasis. That is, it moves the
original basis vectors (e.g. the x and y axes) to the
eigenvectors.

3. D is a diagonal matrix with the eigenvalues along it’s
diagonal. That means it has the affect of stretching alongst
the eigenvectors.

4. P−1 just moves us back into our original basis. That is, it
moves the eigenvectors to the original basis vectors (e.g. the x
and y axes).



Symetric matrices are diagonalizable

Let A ∈ Rn be a symmetric matrix. Symmetric matrices are
orthogonally diagonalizable so A has n distinct real eigenvectors
which are all orthogonal to one another. So let the eigenvalues of
A be λ1, λ2, · · · , λn. The proof of this involves first showing
algebraicly that it works for 2 by 2 symetric matrices and then
using induction to show it works for larger symetric matrices.



Eigenvalues of A−1

Given an eigenvalue and eigenvector for A we can find a
corresponding eigenvalue and eigenvector for A−1. Suppose that
λ, x are an eigenvalue and eigenvector of A. Then

Ax = λx

=⇒ A−1Ax = λA−1x

=⇒ A−1x =
1

λ
x

So x is also an eigenvector of A−1 and the corresponding
eigenvalue is 1/λ. Repeat this process for each of the n
eigenvectors of A to find that the n eigenvalues of A−1 are
1/λ1, 1/λ2, · · · , 1/λn. This fact should also be pretty intuitive
since eigenvalues are used to multiply and division is the inverse of
mulitplication.



the determinant of A−1

The determinant of a matrix is equal to the product of the
eigenvalues. To gain an intuition for why this is true you must
recall that the determinant is the volume of the parallelotype
sppaned by the columns of the matrix. You also need a visual
understanding of the eigenvalues. By using this fact in
combination with the last slide we derive this useful formula,

det(A−1) =
1

λ1

1

λ2
· · · 1

λn
=

1

λ1λ2 · · ·λn
=

1

det(A)



Eigenvalues of A2

This is very similar to what we did for A−1

AAx = Aλx = λλx = λ2x

Therefore, the corresponding eigenvalues of A2 is λ21, λ
2
2, · · · , λ2n.

More generally, Akx = λkx . In fact, we can generalize this to any
polynomial of A. Let P be a function that takes some polynomial.
So P(A) = a0I + a1A + a2A

2 + · · ·+ anA
n. Then the eigenvalues

of P(A) are P(λ1),P(λ2), · · · ,P(λn)



Matrix exponent Suppose A is diagonalized with A = PDP−1.
Then An = (PD����P−1)(PDP−1) · · · (PDP−1) = PDnP−1

Similar matrices Matrices A,B are similar if there exists P such
that B = P−1AP. Then det(B) = det(P−1AP) =
det(P−1)det(A)det(P) = 1

det(P)det(A)det(P) = det(A). Then the
determinant of A is the product of the eigenvalues of A.
inner product once you define the inner product on a vector space,
the angles and norm follow. ||v || = v · v . Angle between vectors
u, v is cos−1( u·v

||u||·||v ||)



A tensor can take multiple vectors as input and is multilinear.
For example T : Rn ×Rn ×Rn → R is a tensor. The inner product
is also a tensor.
We call a finite dimensional vector space with an inner product a
euclidean space.

https://en.wikipedia.org/wiki/Multilinear_map


Matrix representation of dot product with any basis

Let V 2 be a vector space with basis vectors v1, v2. For all,
v ,w ∈ V 2 where v = a1v1 + a2v2,w = b1v1 + b2v2,

< v ,w > =< a1v1 + a2v2,w >

= a1 < v1,w > +a2 < v2,w >

= (a1, a2)

(
< v1, v1 > < v1,V2 >
< v2, v1 > < v2, v2 >

) (
b1
b2

)
The boxed matrix is the matrix representation of the dot product
with respect to the basis vectors {v1, v2}. Let’s call this matrix C



Theorem The eigenvalues of C are all greater than 0:
Proof: First we show that C is positive definite. Suppose v = w so
that a1 = b1, a2 = b2. Then,

< v ,w >=< v , v >= vTCv

Suppose v > 0. Then < v , v >= |v | > 0. Then for all v > 0,

vTCv > 0

So C is positive definite. Therefore, C has all positive eigenvalues.
Recall that all positive definite matrices have only positive
eigenvalues. You should be able to see why visually.



Advantage of orthonormal basis

The orthonormal basis is more convenient because the matrix
representation of the dot product becomes,(

< v1, v1 > < v1,V2 >
< v2, v1 > < v2, v2 >

)
=

(
1 0
0 1

)
So then the dot product between v and w becomes just what
you’d expect: a1b1 + a2b2.



Projective geometry

Projective geometry is the study of geometric properties that are
invariant with respect to projective transformations. For computer
visions this means properties of an image that don’t depend on the
viewpoint of the camera.
In projective space, parallel lines meet at infinity.
Definition A projective space of dimension n is the set of the vector
lines (that is, vector subspaces of dimension one) in a vector space
V of dimension n + 1. Equilvalently, it is the quotient set of
V \{0} by the equivalence relation of being on the same vector
line. As a vector line intersects the unit sphere of V in two
antipodal points, projective spaces can be equivalently defined as
spheres in which antipodal points are identified. A projective space
of dimension 1 is a projective line. A projective space of dimension
2 is a projective plane.
Q: How many lines pass through the origin Rn?. The number of
lines is equal to |R1|.



In homogeneous coordinates, vectors that diiffer only by scale are
considered to be equivalent. In homogeneous coordinates you can
always use rotations instead of translations. To convert a
homegenous vector to an inhomogenous vector just divide by the
last element of the vector. So given a homogenous vectors
x̃ = (x1, x2,w), the inhmoegnous coordinate is (x1/w , x2/w).
Definition A projective (or homogenous) transformation is any
invertable matrix H̃ applied to a homogenous coordinate.
Homogeneous coordinates are ubiquitous in 3d graphics. Here’s a
link to an alternate explanation of homogenous coordinates along
with an explanation of it’s use in 3d computer graphics. There is a
related set of interactive demos for homogenous coordinates

https://hackernoon.com/programmers-guide-to-homogeneous-coordinates-73cbfd2bcc65
https://hackernoon.com/programmers-guide-to-homogeneous-coordinates-73cbfd2bcc65
http://wordsandbuttons.online/interactive_guide_to_homogeneous_coordinates.html


closest point on the line derived geometriclly and then with
calculus

We can normalize the equation for any line in order to derive the
normal vector and distance to the origin,
ax + by + c = 0 =⇒ a√

a2+b2
x + b√

a2+b2
y + c√

a2+b2
= 0. Let

v = ( a√
a2+b2

, b√
a2+b2

). I claim that v is the normal vector to the

plain. This is true because the plane is parallel to the kernel space
of v . Recall, the kernel space is orthogonal. Theorem The distance
from the line to the origin is c√

a2+b2
.

Proof: We want to find the point on the line (x , y) that is closest
to the origin. Then the distance from the origin to the line is just
||(x , y)||. We can find this by using the lagrange multiplier to
minimize ||(x , y)|| under the constraint that ax + by + c = 0. Then
the closest point is ( ac

(a2+b2)
, bc
(a2+b2)

). So the distance to the line is,√
a2c2

(a2 + b2)2
+

b2c2

(a2 + b2)2
=

c√
a2 + b2



Make sure to notice how this proof is totally consistent with what
we found geometrically on the previous slide. This can be
generlized to hyperplanes in higher dimension.


