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Christoffel Symbols

Trihedron at a Point of a Surface
S will denote, as usual, a regular, orientable, and oriented surface. Let
x : U ⊂ R2 → S be a parametrization in the orientation of S . It is
possible to assign to each point of x(U) a natural trihedron given by the
vectors xu, xv , and N.

By expressing the derivatives of the vectors xu, xv , and N in the basis
{xu, xv ,N}, we obtain

xuu = Γ1
11xu + Γ2

11xv + L1N,

xuv = Γ2
12xu + Γ2

12xv + L2N,

xvu = Γ1
21xu + Γ2

21xv + L2N,

xvv = Γ1
22xu + Γ2

22xv + L3N,

Nu = a11xu + a21xv ,

Nv = a12xu + a22xv .
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Christoffel Symbols

Note
By taking the inner product of the first four relations on the previous
slide with N, we immediately obtain L1 = e, L2 = L2 = f , L3 = g , where
e, f , and g are the coefficients of the second fundamental form of S .

Note
The aij ’s in the last two relations on the previous slides come from the
matrix representation(

a11 a21

a12 a22

)
= −

(
e f
f g

)(
E F
F G

)−1

of dNp.
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Christoffel Symbols

Definition
The coefficients Γk

ij , i , j , k = 1, 2, are called the Christoffel symbols of S

in the parametrization x. Since xuv = xvu, we conclude that Γ1
12 = Γ1

21

and Γ2
12 = Γ2

21; that is, the Christoffel symbols are symmetric relative to
the lower indices.

To determine the Christoffel symbols, we take the inner product of the
first four relations with xu and xv , obtaining the system{

Γ1
11E + Γ2

11F = 〈xuu, xu〉 = 1
2 Eu,

Γ1
11F + Γ2

11G = 〈xuu, xv 〉 = Fu − 1
2 Ev ,{

Γ1
12E + Γ2

12F = 〈xuv , xu〉 = 1
2 Ev ,

Γ1
12F + Γ2

12G = 〈xuv , xv 〉 = 1
2 Gu,{

Γ1
22E + Γ2

22F = 〈xvv , xu〉 = Fv − 1
2 Gu,

Γ1
22F + Γ2

22G = 〈xvv , xv 〉 = 1
2 Gv .
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Christoffel Symbols

Note: EG − F 2 6= 0
Thus, it is possible to solve the above system (use Cramer’s Rule) and to
compute the Christoffel symbols in terms of the coefficients of the first
fundamental form, E , F , G , and their derivatives.

Important Observation
All geometric concepts and properties expressed in terms of the
Christoffel symbols are invariant under isometries.
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Christoffel Symbols

Example
We shall compute the Christoffel symbols for a surface of revolution
parametrized by

x(u, v) = (f (v) cos u, f (v) sin u, g(v)), f (v) 6= 0.

Recall

E = (f (v))2 6= 0, F = 0, G = (f ′(v))2 + (g ′(v))2 6= 0.



The Theorem of Gauss

Theorem (Theorema Egregium (Gauss))
The Gaussian curvature K of a surface is invariant by local isometries.

Proof.

⇒
(Γ2

12)u − (Γ2
11)v + Γ1

12Γ2
11 + Γ2

12Γ2
12 − Γ2

11Γ2
22 − Γ1

11Γ2
12 = −E

eg − f 2

EG − F 2

= −EK . (1)



Theorem of Gauss

Consequences

I In fact, if x : U ⊂ R2 → S is a parametrization at p ∈ S and if
ϕ : V ⊂ S → S , where V ⊂ x(U) is a neighborhood of p, is a local
isometry at p, then y = ϕ ◦ x is a parametrization of S at ϕ(p).

I Since ϕ is an isometry, the coefficients of the first fundamental form
in the parametrizations x and y agree at corresponding points q and
ϕ(q), q ∈ V ; thus, the corresponding Christoffel symbols also agree.

I By Eq. ??, K can be computed at a point as a function of the
Christoffel symbols in a given parametrization at the point. It
follows that K (q) = K (ϕ(q)) for all q ∈ V .

Example
Recall that a catenoid is locally isometric to a helicoid. It follows from
the Gauss theorem that the Gaussian curvatures are equal at
corresponding points, a fact which is geometrically nontrivial.
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Importance of Gauss’s Formula

Gauss’s Formula

K = − 1

E

[(
Γ2

12

)
u
−
(
Γ2

11

)
v

+ Γ1
12Γ2

11 + Γ2
12Γ2

12 − Γ2
11Γ2

22 − Γ1
11Γ2

12

]
.

When x is an orthogonal parametrization (i.e., F = 0), then

K = − 1

2
√

EG

[
∂

∂v

(
Ev√
EG

)
+

∂

∂u

(
Gu√
EG

)]
.

Why is this cool?
The Gauss formula expresses the Gaussian curvature K as a function of
the coefficients of the first fundamental form and its derivatives. This
means that K is an intrinsic concept, a very striking fact if we consider
that K was defined using the second fundamental form.
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Intrinsic Geometry

We shall soon see that many other concepts of differential geometry are
in the same setting as the Gaussian curvature; that is, they depend only
on the first fundamental form of the surface. It thus makes sense to talk
about a geometry of the first fundamental form, which we call intrinsic
geometry, since it may be developed without any reference to the space
that contains the surface (once the first fundamental form is given).

Example
The Mainardi-Codazzi Equations are similar to the Gauss formula, and
are given by

fv − gu = eΓ1
22 + f (Γ2

22 − Γ1
12)− gΓ2

12

ev − fu = eΓ1
12 + f (Γ2

12 − Γ1
11)− gΓ2

11.

I The Gauss formula and the Mainardi-Codazzi equations are known
under the name of compatibility equations of the theory of surfaces.

I A natural question is whether there exist further relations of
compatibility between the first and second fundamental forms
besides those already obtained.
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Bonnet’s Theorem

Theorem (Bonnet)
Let E ,F ,G , e, f , g be differentiable functions, defined in an open set
V ⊂ R2, with E > 0 and G > 0. Assume that the given functions satisfy
formally the Gauss and Mainardi-Codazzi equations and that
EG − F 2 > 0. Then, for every q ∈ V there exists a neighborhood U ⊂ V
of q and a diffeomorphism x : U → x(U) ⊂ R3 such that the regular
surface x(U) ⊂ R3 has E ,F ,G and e, f , g as coefficients of the first and
second fundamental forms, respectively. Furthermore, if U is connected
and if

x : U → x(U) ⊂ R3

is another diffeomorphism satisfying the same conditions, then there
exists a translation T and a proper linear orthogonal transformation ρ in
R3 such that x = T ◦ ρ ◦ x.




